IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v431y2004i7010d10.1038_nature03014.html
   My bibliography  Save this article

Generalization in vision and motor control

Author

Listed:
  • Tomaso Poggio

    (McGovern Institute, Center for Biological and Computational Learning, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology)

  • Emilio Bizzi

    (McGovern Institute, Center for Biological and Computational Learning, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology
    European Brain Research Institute, Via del Fosso di Fiorano)

Abstract

Learning is more than memory. It is not simply the building of a look-up table of labelled images, or a phone-directory-like list of motor acts and the corresponding sequences of muscle activation. Central to learning and intelligence is the ability to predict, that is, to generalize to new situations, beyond the memory of specific examples. The key to generalization, in turn, is the architecture of the system, more than the rules of synaptic plasticity. We propose a specific architecture for generalization for both the motor and the visual systems, and argue for a canonical microcircuit underlying visual and motor learning.

Suggested Citation

  • Tomaso Poggio & Emilio Bizzi, 2004. "Generalization in vision and motor control," Nature, Nature, vol. 431(7010), pages 768-774, October.
  • Handle: RePEc:nat:nature:v:431:y:2004:i:7010:d:10.1038_nature03014
    DOI: 10.1038/nature03014
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature03014
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature03014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yael Mandelblat-Cerf & Itai Novick & Eilon Vaadia, 2011. "Expressions of Multiple Neuronal Dynamics during Sensorimotor Learning in the Motor Cortex of Behaving Monkeys," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-14, July.
    2. Hagai Lalazar & L F Abbott & Eilon Vaadia, 2016. "Tuning Curves for Arm Posture Control in Motor Cortex Are Consistent with Random Connectivity," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-27, May.
    3. Taisei Sugiyama & Nicolas Schweighofer & Jun Izawa, 2023. "Reinforcement learning establishes a minimal metacognitive process to monitor and control motor learning performance," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Lindkvist, Emilie & Norberg, Jon, 2014. "Modeling experiential learning: The challenges posed by threshold dynamics for sustainable renewable resource management," Ecological Economics, Elsevier, vol. 104(C), pages 107-118.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:431:y:2004:i:7010:d:10.1038_nature03014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.