IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003293.html
   My bibliography  Save this article

Dynamic Rendering of the Heterogeneous Cell Response to Anticancer Treatments

Author

Listed:
  • Francesca Falcetta
  • Monica Lupi
  • Valentina Colombo
  • Paolo Ubezio

Abstract

The antiproliferative response to anticancer treatment is the result of concurrent responses in all cell cycle phases, extending over several cell generations, whose complexity is not captured by current methods. In the proposed experimental/computational approach, the contemporary use of time-lapse live cell microscopy and flow cytometric data supported the computer rendering of the proliferative process through the cell cycle and subsequent generations during/after treatment. The effects of treatments were modelled with modules describing the functional activity of the main pathways causing arrest, repair and cell death in each phase. A framework modelling environment was created, enabling us to apply different types of modules in each phase and test models at the complexity level justified by the available data. We challenged the method with time-course measures taken in parallel with flow cytometry and time-lapse live cell microscopy in X-ray-treated human ovarian cancer cells, spanning a wide range of doses. The most suitable model of the treatment, including the dose-response of each effect, was progressively built, combining modules with a rational strategy and fitting simultaneously all data of different doses and platforms. The final model gave for the first time the complete rendering in silico of the cycling process following X-ray exposure, providing separate and quantitative measures of the dose-dependence of G1, S and G2M checkpoint activities in subsequent generations, reconciling known effects of ionizing radiations and new insights in a unique scenario.Author Summary: The antiproliferative response to anticancer treatment is the result of concurrent effects in all cell cycle phases, where molecular control pathways (checkpoints) are activated and cells may be arrested to repair DNA damage or killed if not able to succeed in the repair process. The complexity and inter-cell variability of these phenomena are not captured by the available methods, and the origin of the dose-dependence of the response remains elusive. In this work, we present an experimental-computational method that discloses and measures the individual responses of cell cycle controls in each phase and generation. We demonstrate that the method, exploiting jointly data sets obtained by flow cytometry and time-lapse in vivo imaging with a suitable experimental design, is able to achieve a full reconstruction in silico of the actual movement of cell cohorts following X-ray exposure, providing separate and quantitative measures of the dose-dependence of G1, S and G2M checkpoint activities in subsequent generations. Best fit parameters values are actual measures of the probability of activation of the specific pathways of arrest, repair or death within the cell population, linking the molecular scale to the “macroscopic” response, with full appreciation of its dynamics and inter-cell heterogeneity.

Suggested Citation

  • Francesca Falcetta & Monica Lupi & Valentina Colombo & Paolo Ubezio, 2013. "Dynamic Rendering of the Heterogeneous Cell Response to Anticancer Treatments," PLOS Computational Biology, Public Library of Science, vol. 9(10), pages 1-15, October.
  • Handle: RePEc:plo:pcbi00:1003293
    DOI: 10.1371/journal.pcbi.1003293
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003293
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003293&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003293?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.