Author
Listed:
- M Rowan Brown
- Huw D Summers
- Paul Rees
- Paul J Smith
- Sally C Chappell
- Rachel J Errington
Abstract
We present a new approach to the handling and interrogating of large flow cytometry data where cell status and function can be described, at the population level, by global descriptors such as distribution mean or co-efficient of variation experimental data. Here we link the “real” data to initialise a computer simulation of the cell cycle that mimics the evolution of individual cells within a larger population and simulates the associated changes in fluorescence intensity of functional reporters. The model is based on stochastic formulations of cell cycle progression and cell division and uses evolutionary algorithms, allied to further experimental data sets, to optimise the system variables. At the population level, the in-silico cells provide the same statistical distributions of fluorescence as their real counterparts; in addition the model maintains information at the single cell level. The cell model is demonstrated in the analysis of cell cycle perturbation in human osteosarcoma tumour cells, using the topoisomerase II inhibitor, ICRF-193. The simulation gives a continuous temporal description of the pharmacodynamics between discrete experimental analysis points with a 24 hour interval; providing quantitative assessment of inter-mitotic time variation, drug interaction time constants and sub-population fractions within normal and polyploid cell cycles. Repeated simulations indicate a model accuracy of ±5%. The development of a simulated cell model, initialized and calibrated by reference to experimental data, provides an analysis tool in which biological knowledge can be obtained directly via interrogation of the in-silico cell population. It is envisaged that this approach to the study of cell biology by simulating a virtual cell population pertinent to the data available can be applied to “generic” cell-based outputs including experimental data from imaging platforms.Author Summary: One of the key challenges facing cell biologists today is understanding the influence of molecular controls in shaping and controlling cell growth and proliferation. There is growing recognition that abnormal progression through the cell cycle and the associated effects on the growth of cell populations has a major impact on a wide range of biological and clinical problems, including: tumour growth, developmental control, origins of chromosomal instability and drug resistance. Multiparameter flow cytometry is frequently used to assess proliferation dynamics of cellular populations using fluorescent reporters generating large data sets that can inform simulation models. We have developed stochastic computing approaches allied to evolutionary algorithms to produce simulated cell populations—providing a new approach to the analysis of real multi-variate data sets obtained by flow cytometry. The methodology delivers new insight on biological processes in delivering a continuous simulation of the dynamic evolution of a cellular system between fixed sampling points, hence, converting static data into dynamic data revealing the effective traverse of the cell cycle, restriction points and commitment gateways. The approach also permits the visualisation of the variation between individual cells reflecting biological heterogeneity and potentially Darwinian fitness, given that the simulation delivers a report on population dynamics in which each and every cell can be tracked.
Suggested Citation
M Rowan Brown & Huw D Summers & Paul Rees & Paul J Smith & Sally C Chappell & Rachel J Errington, 2010.
"Flow-Based Cytometric Analysis of Cell Cycle via Simulated Cell Populations,"
PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-10, April.
Handle:
RePEc:plo:pcbi00:1000741
DOI: 10.1371/journal.pcbi.1000741
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000741. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.