IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003276.html
   My bibliography  Save this article

Novel Methods for Analysing Bacterial Tracks Reveal Persistence in Rhodobacter sphaeroides

Author

Listed:
  • Gabriel Rosser
  • Alexander G Fletcher
  • David A Wilkinson
  • Jennifer A de Beyer
  • Christian A Yates
  • Judith P Armitage
  • Philip K Maini
  • Ruth E Baker

Abstract

Tracking bacteria using video microscopy is a powerful experimental approach to probe their motile behaviour. The trajectories obtained contain much information relating to the complex patterns of bacterial motility. However, methods for the quantitative analysis of such data are limited. Most swimming bacteria move in approximately straight lines, interspersed with random reorientation phases. It is therefore necessary to segment observed tracks into swimming and reorientation phases to extract useful statistics. We present novel robust analysis tools to discern these two phases in tracks. Our methods comprise a simple and effective protocol for removing spurious tracks from tracking datasets, followed by analysis based on a two-state hidden Markov model, taking advantage of the availability of mutant strains that exhibit swimming-only or reorientating-only motion to generate an empirical prior distribution. Using simulated tracks with varying levels of added noise, we validate our methods and compare them with an existing heuristic method. To our knowledge this is the first example of a systematic assessment of analysis methods in this field. The new methods are substantially more robust to noise and introduce less systematic bias than the heuristic method. We apply our methods to tracks obtained from the bacterial species Rhodobacter sphaeroides and Escherichia coli. Our results demonstrate that R. sphaeroides exhibits persistence over the course of a tumbling event, which is a novel result with important implications in the study of this and similar species.Author Summary: Many species of planktonic bacteria are able to propel themselves through a liquid medium by the use of one or more helical flagella. Commonly, the observed motile behaviour consists of a series of approximately straight-line movements, interspersed with random, approximately stationary, reorientation events. This phenomenon is of current interest as it is known to be linked to important bacterial processes such as pathogenicity and biofilm formation. An accepted experimental approach for studying bacterial motility in approximately indigenous conditions is the tracking of cells using a microscope. However, there are currently no validated methods for the analysis of such tracking data. In particular, the identification of reorientation phases, which is complicated by various sources of noise in the data, remains an open challenge. In this paper we present novel methods for analysing large bacterial tracking datasets. We assess the performance of our new methods using computational simulations, and show that they are more reliable than a previously published method. We proceed to analyse previously unpublished tracks from the bacterial species Rhodobacter sphaeroides, an emerging model organism in the field of bacterial motility, and Escherichia coli, a well-studied model bacterium. The analysis demonstrates the novel result that R. sphaeroides exhibits directional persistence over the course of a reorientation event.

Suggested Citation

  • Gabriel Rosser & Alexander G Fletcher & David A Wilkinson & Jennifer A de Beyer & Christian A Yates & Judith P Armitage & Philip K Maini & Ruth E Baker, 2013. "Novel Methods for Analysing Bacterial Tracks Reveal Persistence in Rhodobacter sphaeroides," PLOS Computational Biology, Public Library of Science, vol. 9(10), pages 1-18, October.
  • Handle: RePEc:plo:pcbi00:1003276
    DOI: 10.1371/journal.pcbi.1003276
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003276
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003276&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003276?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Raibatak Das & Christopher W Cairo & Daniel Coombs, 2009. "A Hidden Markov Model for Single Particle Tracks Quantifies Dynamic Interactions between LFA-1 and the Actin Cytoskeleton," PLOS Computational Biology, Public Library of Science, vol. 5(11), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonathan U Harrison & Ruth E Baker, 2018. "The impact of temporal sampling resolution on parameter inference for biological transport models," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-30, June.
    2. Oliver Pohl & Marius Hintsche & Zahra Alirezaeizanjani & Maximilian Seyrich & Carsten Beta & Holger Stark, 2017. "Inferring the Chemotactic Strategy of P. putida and E. coli Using Modified Kramers-Moyal Coefficients," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-24, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Hirsch & Richard Wareham & Ji W Yoon & Daniel J Rolfe & Laura C Zanetti-Domingues & Michael P Hobson & Peter J Parker & Marisa L Martin-Fernandez & Sumeetpal S Singh, 2019. "A global sampler of single particle tracking solutions for single molecule microscopy," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-21, October.
    2. Edward J Banigan & Tajie H Harris & David A Christian & Christopher A Hunter & Andrea J Liu, 2015. "Heterogeneous CD8+ T Cell Migration in the Lymph Node in the Absence of Inflammation Revealed by Quantitative Migration Analysis," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-20, February.
    3. Albers, Tony & Cisternas, Jaime & Radons, Günter, 2022. "Chaotic diffusion of dissipative solitons: From anti-persistent random walks to Hidden Markov Models," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.