IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002951.html
   My bibliography  Save this article

Druggable Protein Interaction Sites Are More Predisposed to Surface Pocket Formation than the Rest of the Protein Surface

Author

Listed:
  • David K Johnson
  • John Karanicolas

Abstract

Despite intense interest and considerable effort via high-throughput screening, there are few examples of small molecules that directly inhibit protein-protein interactions. This suggests that many protein interaction surfaces may not be intrinsically “druggable” by small molecules, and elevates in importance the few successful examples as model systems for improving our fundamental understanding of druggability. Here we describe an approach for exploring protein fluctuations enriched in conformations containing surface pockets suitable for small molecule binding. Starting from a set of seven unbound protein structures, we find that the presence of low-energy pocket-containing conformations is indeed a signature of druggable protein interaction sites and that analogous surface pockets are not formed elsewhere on the protein. We further find that ensembles of conformations generated with this biased approach structurally resemble known inhibitor-bound structures more closely than equivalent ensembles of unbiased conformations. Collectively these results suggest that “druggability” is a property encoded on a protein surface through its propensity to form pockets, and inspire a model in which the crude features of the predisposed pocket(s) restrict the range of complementary ligands; additional smaller conformational changes then respond to details of a particular ligand. We anticipate that the insights described here will prove useful in selecting protein targets for therapeutic intervention. Author Summary: Identifying small-molecule inhibitors of protein interactions has traditionally presented a challenge for modern screening methods, despite interest stemming from the fact that such interactions comprise the underlying mechanisms for cell proliferation, differentiation, and survival. This suggests that many protein interaction surfaces may not be intrinsically “druggable” by small molecules, and elevates in importance the few successful examples as model systems for improving our understanding of factors contributing to druggability. Here we describe a new approach for exploring protein fluctuations leading to surface pockets suitable for small molecule binding. We find that the presence of such pockets is indeed a signature of druggable protein interaction sites, suggesting that “druggability” is a property encoded on a protein surface through its propensity to form pockets. We anticipate that the insights described here will prove useful in selecting protein targets for therapeutic intervention.

Suggested Citation

  • David K Johnson & John Karanicolas, 2013. "Druggable Protein Interaction Sites Are More Predisposed to Surface Pocket Formation than the Rest of the Protein Surface," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-10, March.
  • Handle: RePEc:plo:pcbi00:1002951
    DOI: 10.1371/journal.pcbi.1002951
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002951
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002951&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002951?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.