IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002564.html
   My bibliography  Save this article

Coding Conspecific Identity and Motion in the Electric Sense

Author

Listed:
  • Na Yu
  • Ginette Hupé
  • Charles Garfinkle
  • John E Lewis
  • André Longtin

Abstract

Interactions among animals can result in complex sensory signals containing a variety of socially relevant information, including the number, identity, and relative motion of conspecifics. How the spatiotemporal properties of such evolving naturalistic signals are encoded is a key question in sensory neuroscience. Here, we present results from experiments and modeling that address this issue in the context of the electric sense, which combines the spatial aspects of vision and touch, with the temporal aspects of audition. Wave-type electric fish, such as the brown ghost knifefish, Apteronotus leptorhynchus, used in this study, are uniquely identified by the frequency of their electric organ discharge (EOD). Multiple beat frequencies arise from the superposition of the EODs of each fish. We record the natural electrical signals near the skin of a “receiving” fish that are produced by stationary and freely swimming conspecifics. Using spectral analysis, we find that the primary beats, and the secondary beats between them (“beats of beats”), can be greatly influenced by fish swimming; the resulting motion produces low-frequency envelopes that broaden all the beat peaks and reshape the “noise floor”. We assess the consequences of this motion on sensory coding using a model electroreceptor. We show that the primary and secondary beats are encoded in the afferent spike train, but that motion acts to degrade this encoding. We also simulate the response of a realistic population of receptors, and find that it can encode the motion envelope well, primarily due to the receptors with lower firing rates. We discuss the implications of our results for the identification of conspecifics through specific beat frequencies and its possible hindrance by active swimming. Author Summary: Effectively processing information from a sensory scene is essential for animal survival. Motion in a sensory scene complicates this task by dynamically modifying signal properties. To address this general issue, we focus on weakly electric fish. Each fish produces a weak electrical carrier signal with a characteristic frequency. Electroreceptors on its skin encode the modulations of this carrier caused by nearby objects and other animals, enabling this fish to thrive in its nocturnal environment. Little is known about how swimming movements influence natural electrosensory scenes, specifically in the context of detection and identification of, and communication with conspecifics. Using recordings involving free-swimming fish, we characterize the amplitude modulations of the carrier signal arising from small groups of fish. The differences between individual frequencies (beats) are prominent features of these signals, with the number of beats reflecting the number of neighbours. We also find that the distance and motion of a free-swimming fish are represented in a slow modulation of the beat at the receiving fish. Modeling shows that these stimulus features can be effectively encoded in the activity of the electroreceptors, but that encoding quality of some features can be degraded by motion, suggesting that active swimming could hinder conspecific identification.

Suggested Citation

  • Na Yu & Ginette Hupé & Charles Garfinkle & John E Lewis & André Longtin, 2012. "Coding Conspecific Identity and Motion in the Electric Sense," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-16, July.
  • Handle: RePEc:plo:pcbi00:1002564
    DOI: 10.1371/journal.pcbi.1002564
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002564
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002564&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002564?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gerhard von der Emde & Stephan Schwarz & Leonel Gomez & Ruben Budelli & Kirsty Grant, 1998. "Electric fish measure distance in the dark," Nature, Nature, vol. 395(6705), pages 890-894, October.
    2. Zachary M. Smith & Bertrand Delgutte & Andrew J. Oxenham, 2002. "Chimaeric sounds reveal dichotomies in auditory perception," Nature, Nature, vol. 416(6876), pages 87-90, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sierra Broussard & Gregory Hickok & Kourosh Saberi, 2017. "Robustness of speech intelligibility at moderate levels of spectral degradation," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-14, July.
    2. Caroline Garcia Forlim & Reynaldo Daniel Pinto & Pablo Varona & Francisco B Rodríguez, 2015. "Delay-Dependent Response in Weakly Electric Fish under Closed-Loop Pulse Stimulation," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-14, October.
    3. Caroline G Forlim & Reynaldo D Pinto, 2014. "Automatic Realistic Real Time Stimulation/Recording in Weakly Electric Fish: Long Time Behavior Characterization in Freely Swimming Fish and Stimuli Discrimination," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-14, January.
    4. Mina Sadeghi & Xiu Zhai & Ian H Stevenson & Monty A Escabí, 2019. "A neural ensemble correlation code for sound category identification," PLOS Biology, Public Library of Science, vol. 17(10), pages 1-41, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.