Author
Listed:
- Dominik Wodarz
- Andrew Hofacre
- John W Lau
- Zhiying Sun
- Hung Fan
- Natalia L Komarova
Abstract
Oncolytic viruses replicate selectively in tumor cells and can serve as targeted treatment agents. While promising results have been observed in clinical trials, consistent success of therapy remains elusive. The dynamics of virus spread through tumor cell populations has been studied both experimentally and computationally. However, a basic understanding of the principles underlying virus spread in spatially structured target cell populations has yet to be obtained. This paper studies such dynamics, using a newly constructed recombinant adenovirus type-5 (Ad5) that expresses enhanced jellyfish green fluorescent protein (EGFP), AdEGFPuci, and grows on human 293 embryonic kidney epithelial cells, allowing us to track cell numbers and spatial patterns over time. The cells are arranged in a two-dimensional setting and allow virus spread to occur only to target cells within the local neighborhood. Despite the simplicity of the setup, complex dynamics are observed. Experiments gave rise to three spatial patterns that we call “hollow ring structure”, “filled ring structure”, and “disperse pattern”. An agent-based, stochastic computational model is used to simulate and interpret the experiments. The model can reproduce the experimentally observed patterns, and identifies key parameters that determine which pattern of virus growth arises. The model is further used to study the long-term outcome of the dynamics for the different growth patterns, and to investigate conditions under which the virus population eliminates the target cells. We find that both the filled ring structure and disperse pattern of initial expansion are indicative of treatment failure, where target cells persist in the long run. The hollow ring structure is associated with either target cell extinction or low-level persistence, both of which can be viewed as treatment success. Interestingly, it is found that equilibrium properties of ordinary differential equations describing the dynamics in local neighborhoods in the agent-based model can predict the outcome of the spatial virus-cell dynamics, which has important practical implications. This analysis provides a first step towards understanding spatial oncolytic virus dynamics, upon which more detailed investigations and further complexity can be built. Author Summary: Traditional chemotherapy of cancers is characterized by strong side effects, while showing a low success rate in the long term control of tumors. Besides small molecule inhibitors, which have shown great promise, oncolytic viruses present an emerging specific treatment approach. They are engineered viruses that spread from tumor cell to tumor cell, killing them in the process. Non-tumor cells are generally not infected. While clinical trials have given rise to promising results, reliable success remains elusive. Besides experiments, computational approaches provide a valuable tool to better understand the dynamics of virus spread through a growing population or tumor cells. Combining in vitro experimental approaches with computational models, we study the principles of virus spread through a spatially structured population of cells, which is of fundamental importance to understanding virus treatment of solid tumors. We describe different growth patterns that can occur, interpret them, and explore how they relate to the ability of the virus to induce tumor regression. We further define how these spatial dynamics relate to settings where cells and viruses mix more readily, such as in many cell culture experiments that are used to evaluate candidate viruses.
Suggested Citation
Dominik Wodarz & Andrew Hofacre & John W Lau & Zhiying Sun & Hung Fan & Natalia L Komarova, 2012.
"Complex Spatial Dynamics of Oncolytic Viruses In Vitro: Mathematical and Experimental Approaches,"
PLOS Computational Biology, Public Library of Science, vol. 8(6), pages 1-15, June.
Handle:
RePEc:plo:pcbi00:1002547
DOI: 10.1371/journal.pcbi.1002547
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002547. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.