IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002477.html
   My bibliography  Save this article

Computational Design of a PDZ Domain Peptide Inhibitor that Rescues CFTR Activity

Author

Listed:
  • Kyle E Roberts
  • Patrick R Cushing
  • Prisca Boisguerin
  • Dean R Madden
  • Bruce R Donald

Abstract

The cystic fibrosis transmembrane conductance regulator (CFTR) is an epithelial chloride channel mutated in patients with cystic fibrosis (CF). The most prevalent CFTR mutation, ΔF508, blocks folding in the endoplasmic reticulum. Recent work has shown that some ΔF508-CFTR channel activity can be recovered by pharmaceutical modulators (“potentiators” and “correctors”), but ΔF508-CFTR can still be rapidly degraded via a lysosomal pathway involving the CFTR-associated ligand (CAL), which binds CFTR via a PDZ interaction domain. We present a study that goes from theory, to new structure-based computational design algorithms, to computational predictions, to biochemical testing and ultimately to epithelial-cell validation of novel, effective CAL PDZ inhibitors (called “stabilizers”) that rescue ΔF508-CFTR activity. To design the “stabilizers”, we extended our structural ensemble-based computational protein redesign algorithm to encompass protein-protein and protein-peptide interactions. The computational predictions achieved high accuracy: all of the top-predicted peptide inhibitors bound well to CAL. Furthermore, when compared to state-of-the-art CAL inhibitors, our design methodology achieved higher affinity and increased binding efficiency. The designed inhibitor with the highest affinity for CAL (kCAL01) binds six-fold more tightly than the previous best hexamer (iCAL35), and 170-fold more tightly than the CFTR C-terminus. We show that kCAL01 has physiological activity and can rescue chloride efflux in CF patient-derived airway epithelial cells. Since stabilizers address a different cellular CF defect from potentiators and correctors, our inhibitors provide an additional therapeutic pathway that can be used in conjunction with current methods. Author Summary: Cystic fibrosis (CF) is an inherited disease that causes the body to produce thick mucus that clogs the lungs and obstructs the breakdown and absorption of food. The cystic fibrosis transmembrane conductance regulator (CFTR) is mutated in CF patients, and the most common mutation causes three defects in CFTR: misfolding, decreased function, and rapid degradation. Drugs are currently being studied to correct the first two CFTR defects, but the problem of rapid degradation remains. Recently, key protein-protein interactions have been discovered that implicate the protein CAL in CFTR degradation. Here we have developed new computational protein design algorithms and used them to successfully predict peptide inhibitors of the CAL-CFTR interface. Our algorithm uses a structural ensemble-based evaluation of protein sequences and conformations to calculate accurate predictions of protein-peptide binding affinities. The algorithm is general and can be applied to a wide variety of protein-protein interface designs. All of our designed inhibitors bound CAL with high affinity. We tested our top binding peptide and observed that the inhibitor could successfully rescue CFTR function in CF patient-derived epithelial cells. Our designed inhibitors provide a novel therapeutic path which could be used in combination with existing CF therapeutics for additive benefit.

Suggested Citation

  • Kyle E Roberts & Patrick R Cushing & Prisca Boisguerin & Dean R Madden & Bruce R Donald, 2012. "Computational Design of a PDZ Domain Peptide Inhibitor that Rescues CFTR Activity," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-12, April.
  • Handle: RePEc:plo:pcbi00:1002477
    DOI: 10.1371/journal.pcbi.1002477
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002477
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002477&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002477?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pablo Gainza & Kyle E Roberts & Bruce R Donald, 2012. "Protein Design Using Continuous Rotamers," PLOS Computational Biology, Public Library of Science, vol. 8(1), pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khaled Daqrouq & Rami Alhmouz & Ahmed Balamesh & Adnan Memic, 2015. "Application of Wavelet Transform for PDZ Domain Classification," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-16, April.
    2. Swati Jain & Jonathan D Jou & Ivelin S Georgiev & Bruce R Donald, 2017. "A critical analysis of computational protein design with sparse residue interaction graphs," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-30, March.
    3. Anna U Lowegard & Marcel S Frenkel & Graham T Holt & Jonathan D Jou & Adegoke A Ojewole & Bruce R Donald, 2020. "Novel, provable algorithms for efficient ensemble-based computational protein design and their application to the redesign of the c-Raf-RBD:KRas protein-protein interface," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-27, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Swati Jain & Jonathan D Jou & Ivelin S Georgiev & Bruce R Donald, 2017. "A critical analysis of computational protein design with sparse residue interaction graphs," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-30, March.
    2. Anna U Lowegard & Marcel S Frenkel & Graham T Holt & Jonathan D Jou & Adegoke A Ojewole & Bruce R Donald, 2020. "Novel, provable algorithms for efficient ensemble-based computational protein design and their application to the redesign of the c-Raf-RBD:KRas protein-protein interface," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-27, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.