IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002203.html
   My bibliography  Save this article

The Dynamics of Supply and Demand in mRNA Translation

Author

Listed:
  • Chris A Brackley
  • M Carmen Romano
  • Marco Thiel

Abstract

We study the elongation stage of mRNA translation in eukaryotes and find that, in contrast to the assumptions of previous models, both the supply and the demand for tRNA resources are important for determining elongation rates. We find that increasing the initiation rate of translation can lead to the depletion of some species of aa-tRNA, which in turn can lead to slow codons and queueing. Particularly striking “competition” effects are observed in simulations of multiple species of mRNA which are reliant on the same pool of tRNA resources. These simulations are based on a recent model of elongation which we use to study the translation of mRNA sequences from the Saccharomyces cerevisiae genome. This model includes the dynamics of the use and recharging of amino acid tRNA complexes, and we show via Monte Carlo simulation that this has a dramatic effect on the protein production behaviour of the system. Author Summary: In this paper we show that the rate at which proteins are produced can be controlled at the elongation stage of mRNA translation. Regulation of translation initiation has been a focus of much study, but the subsequent effect of changes in the initiation rate on the overall translation rate, and the role of slow and fast codon usage in mRNA sequences is still not fully understood. We consider a model of elongation in which the dynamics of tRNA use and recharging are considered for real mRNA sequences. We find that the balance between the demand for, and supply of tRNAs is crucial in determining translation rates. Particularly interesting “competition” effects are observed when the simultaneous translation of multiple mRNA is considered. We show indeed that, via the choice of slow or fast codons, it is in principle possible to control how variation of the supply and demand for tRNA resources changes the rate of protein production from different mRNAs.

Suggested Citation

  • Chris A Brackley & M Carmen Romano & Marco Thiel, 2011. "The Dynamics of Supply and Demand in mRNA Translation," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-16, October.
  • Handle: RePEc:plo:pcbi00:1002203
    DOI: 10.1371/journal.pcbi.1002203
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002203
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002203&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002203?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Meenakshi K. Doma & Roy Parker, 2006. "Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation," Nature, Nature, vol. 440(7083), pages 561-564, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gupta, Ankita & Gupta, Arvind Kumar, 2024. "Reservoir crowding in a dynamically disordered bidirectional system with narrow entrances," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malgorzata J. Latallo & Shaopeng Wang & Daoyuan Dong & Blake Nelson & Nathan M. Livingston & Rong Wu & Ning Zhao & Timothy J. Stasevich & Michael C. Bassik & Shuying Sun & Bin Wu, 2023. "Single-molecule imaging reveals distinct elongation and frameshifting dynamics between frames of expanded RNA repeats in C9ORF72-ALS/FTD," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Katharina Best & Ken Ikeuchi & Lukas Kater & Daniel Best & Joanna Musial & Yoshitaka Matsuo & Otto Berninghausen & Thomas Becker & Toshifumi Inada & Roland Beckmann, 2023. "Structural basis for clearing of ribosome collisions by the RQT complex," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Michelle M. Kameda-Smith & Helen Zhu & En-Ching Luo & Yujin Suk & Agata Xella & Brian Yee & Chirayu Chokshi & Sansi Xing & Frederick Tan & Raymond G. Fox & Ashley A. Adile & David Bakhshinyan & Kevin , 2022. "Characterization of an RNA binding protein interactome reveals a context-specific post-transcriptional landscape of MYC-amplified medulloblastoma," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    4. Yosuke Ito & Yuhei Chadani & Tatsuya Niwa & Ayako Yamakawa & Kodai Machida & Hiroaki Imataka & Hideki Taguchi, 2022. "Nascent peptide-induced translation discontinuation in eukaryotes impacts biased amino acid usage in proteomes," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Xiaolu Wang & Yao Li & Xiaojie Yan & Qing Yang & Bing Zhang & Ying Zhang & Xinxin Yuan & Chenhao Jiang & Dongxing Chen & Quanyan Liu & Tong Liu & Wenyi Mi & Ying Yu & Cheng Dong, 2023. "Recognition of an Ala-rich C-degron by the E3 ligase Pirh2," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Chen Bao & Mingyi Zhu & Inna Nykonchuk & Hironao Wakabayashi & David H. Mathews & Dmitri N. Ermolenko, 2022. "Specific length and structure rather than high thermodynamic stability enable regulatory mRNA stem-loops to pause translation," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.