IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v440y2006i7083d10.1038_nature04530.html
   My bibliography  Save this article

Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation

Author

Listed:
  • Meenakshi K. Doma

    (University of Arizona)

  • Roy Parker

    (University of Arizona)

Abstract

This study identifies a third eukaryotic quality-control mechanism that ensures only functional mRNAs are translated — 'no-go decay'. This system recognizes and degrades mRNAs with stalled translation elongation complexes, which might occur if the mRNA is damaged.

Suggested Citation

  • Meenakshi K. Doma & Roy Parker, 2006. "Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation," Nature, Nature, vol. 440(7083), pages 561-564, March.
  • Handle: RePEc:nat:nature:v:440:y:2006:i:7083:d:10.1038_nature04530
    DOI: 10.1038/nature04530
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature04530
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature04530?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chris A Brackley & M Carmen Romano & Marco Thiel, 2011. "The Dynamics of Supply and Demand in mRNA Translation," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-16, October.
    2. Yosuke Ito & Yuhei Chadani & Tatsuya Niwa & Ayako Yamakawa & Kodai Machida & Hiroaki Imataka & Hideki Taguchi, 2022. "Nascent peptide-induced translation discontinuation in eukaryotes impacts biased amino acid usage in proteomes," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Chen Bao & Mingyi Zhu & Inna Nykonchuk & Hironao Wakabayashi & David H. Mathews & Dmitri N. Ermolenko, 2022. "Specific length and structure rather than high thermodynamic stability enable regulatory mRNA stem-loops to pause translation," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Katharina Best & Ken Ikeuchi & Lukas Kater & Daniel Best & Joanna Musial & Yoshitaka Matsuo & Otto Berninghausen & Thomas Becker & Toshifumi Inada & Roland Beckmann, 2023. "Structural basis for clearing of ribosome collisions by the RQT complex," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Michelle M. Kameda-Smith & Helen Zhu & En-Ching Luo & Yujin Suk & Agata Xella & Brian Yee & Chirayu Chokshi & Sansi Xing & Frederick Tan & Raymond G. Fox & Ashley A. Adile & David Bakhshinyan & Kevin , 2022. "Characterization of an RNA binding protein interactome reveals a context-specific post-transcriptional landscape of MYC-amplified medulloblastoma," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    6. Malgorzata J. Latallo & Shaopeng Wang & Daoyuan Dong & Blake Nelson & Nathan M. Livingston & Rong Wu & Ning Zhao & Timothy J. Stasevich & Michael C. Bassik & Shuying Sun & Bin Wu, 2023. "Single-molecule imaging reveals distinct elongation and frameshifting dynamics between frames of expanded RNA repeats in C9ORF72-ALS/FTD," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Xiaolu Wang & Yao Li & Xiaojie Yan & Qing Yang & Bing Zhang & Ying Zhang & Xinxin Yuan & Chenhao Jiang & Dongxing Chen & Quanyan Liu & Tong Liu & Wenyi Mi & Ying Yu & Cheng Dong, 2023. "Recognition of an Ala-rich C-degron by the E3 ligase Pirh2," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:440:y:2006:i:7083:d:10.1038_nature04530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.