IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002152.html
   My bibliography  Save this article

Structure and Dynamics of the Membrane-Bound Cytochrome P450 2C9

Author

Listed:
  • Vlad Cojocaru
  • Kia Balali-Mood
  • Mark S P Sansom
  • Rebecca C Wade

Abstract

The microsomal, membrane-bound, human cytochrome P450 (CYP) 2C9 is a liver-specific monooxygenase essential for drug metabolism. CYPs require electron transfer from the membrane-bound CYP reductase (CPR) for catalysis. The structural details and functional relevance of the CYP-membrane interaction are not understood. From multiple coarse grained molecular simulations started with arbitrary configurations of protein-membrane complexes, we found two predominant orientations of CYP2C9 in the membrane, both consistent with experiments and conserved in atomic-resolution simulations. The dynamics of membrane-bound and soluble CYP2C9 revealed correlations between opening and closing of different tunnels from the enzyme's buried active site. The membrane facilitated the opening of a tunnel leading into it by stabilizing the open state of an internal aromatic gate. Other tunnels opened selectively in the simulations of product-bound CYP2C9. We propose that the membrane promotes binding of liposoluble substrates by stabilizing protein conformations with an open access tunnel and provide evidence for selective substrate access and product release routes in mammalian CYPs. The models derived here are suitable for extension to incorporate other CYPs for oligomerization studies or the CYP reductase for studies of the electron transfer mechanism, whereas the modeling procedure is generally applicable to study proteins anchored in the bilayer by a single transmembrane helix. Author Summary: We describe the first atomic-detail models and simulations of a full-length, membrane-bound mammalian cytochrome P450. To date, all the structural studies of microsomal, drug-metabolizing cytochrome P450s have been performed using engineered, solubilized forms of the enzymes and it is not yet understood how the membrane influences their structure, dynamics, and ability to bind substrates. We focused on CYP2C9, the second most abundant cytochrome P450 in the human liver which oxidizes 20% of all marketed drugs. Here, we have derived models of CYP2C9-membrane complexes with a modeling procedure based on molecular dynamics simulations started with arbitrary configurations of the protein in the membrane and performed using both coarse grained and atomic-detail molecular representations. This procedure is expected to be generally applicable to proteins that are anchored in the membrane with a single transmembrane helix. The models and simulations provide evidence for selective substrate access and product release routes in membrane-bound CYPs. This observation may contribute to new strategies to manipulate the activity of CYPs and other enzymes with buried active sites. We anticipate that this study will bring about a paradigm shift towards studying microsomal CYPs as dynamic structures in their natural, lipid environment rather than in artificially solubilized forms.

Suggested Citation

  • Vlad Cojocaru & Kia Balali-Mood & Mark S P Sansom & Rebecca C Wade, 2011. "Structure and Dynamics of the Membrane-Bound Cytochrome P450 2C9," PLOS Computational Biology, Public Library of Science, vol. 7(8), pages 1-14, August.
  • Handle: RePEc:plo:pcbi00:1002152
    DOI: 10.1371/journal.pcbi.1002152
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002152
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002152&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002152?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.