Author
Listed:
- Thomas O'Hara
- László Virág
- András Varró
- Yoram Rudy
Abstract
Cellular electrophysiology experiments, important for understanding cardiac arrhythmia mechanisms, are usually performed with channels expressed in non myocytes, or with non-human myocytes. Differences between cell types and species affect results. Thus, an accurate model for the undiseased human ventricular action potential (AP) which reproduces a broad range of physiological behaviors is needed. Such a model requires extensive experimental data, but essential elements have been unavailable. Here, we develop a human ventricular AP model using new undiseased human ventricular data: Ca2+ versus voltage dependent inactivation of L-type Ca2+ current (ICaL); kinetics for the transient outward, rapid delayed rectifier (IKr), Na+/Ca2+ exchange (INaCa), and inward rectifier currents; AP recordings at all physiological cycle lengths; and rate dependence and restitution of AP duration (APD) with and without a variety of specific channel blockers. Simulated APs reproduced the experimental AP morphology, APD rate dependence, and restitution. Using undiseased human mRNA and protein data, models for different transmural cell types were developed. Experiments for rate dependence of Ca2+ (including peak and decay) and intracellular sodium ([Na+]i) in undiseased human myocytes were quantitatively reproduced by the model. Early afterdepolarizations were induced by IKr block during slow pacing, and AP and Ca2+ alternans appeared at rates >200 bpm, as observed in the nonfailing human ventricle. Ca2+/calmodulin-dependent protein kinase II (CaMK) modulated rate dependence of Ca2+ cycling. INaCa linked Ca2+ alternation to AP alternans. CaMK suppression or SERCA upregulation eliminated alternans. Steady state APD rate dependence was caused primarily by changes in [Na+]i, via its modulation of the electrogenic Na+/K+ ATPase current. At fast pacing rates, late Na+ current and ICaL were also contributors. APD shortening during restitution was primarily dependent on reduced late Na+ and ICaL currents due to inactivation at short diastolic intervals, with additional contribution from elevated IKr due to incomplete deactivation. Author Summary: Understanding and preventing irregular heart rhythms that can lead to sudden death begins with basic research regarding single cell electrical behavior. Most of these studies are performed using non-human cells. However, differences between human and non-human cell properties affect experimental results and invoke different mechanisms of responses to heart rate changes and to drugs. Using essential and previously unavailable experimental data from human hearts, we developed and validated an accurate mathematical model of the human cardiac cell. We compared cellular behaviors and mechanisms to an extensive dataset including measurements from more than 100 undiseased human hearts. The model responds to pacing rate and premature beats as in experiments. At very fast pacing rates, beat to beat alternations in intracellular calcium concentration and electrophysiological behavior were observed as in human heart experiments. In presence of drug block, arrhythmic behavior was observed. The basis for these and other important rhythmic and irregular rhythm behaviors was investigated using the model.
Suggested Citation
Thomas O'Hara & László Virág & András Varró & Yoram Rudy, 2011.
"Simulation of the Undiseased Human Cardiac Ventricular Action Potential: Model Formulation and Experimental Validation,"
PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-29, May.
Handle:
RePEc:plo:pcbi00:1002061
DOI: 10.1371/journal.pcbi.1002061
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002061. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.