IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002008.html
   My bibliography  Save this article

Animal Interactions and the Emergence of Territoriality

Author

Listed:
  • Luca Giuggioli
  • Jonathan R Potts
  • Stephen Harris

Abstract

Inferring the role of interactions in territorial animals relies upon accurate recordings of the behaviour of neighbouring individuals. Such accurate recordings are rarely available from field studies. As a result, quantification of the interaction mechanisms has often relied upon theoretical approaches, which hitherto have been limited to comparisons of macroscopic population-level predictions from un-tested interaction models. Here we present a quantitative framework that possesses a microscopic testable hypothesis on the mechanism of conspecific avoidance mediated by olfactory signals in the form of scent marks. We find that the key parameters controlling territoriality are two: the average territory size, i.e. the inverse of the population density, and the time span during which animal scent marks remain active. Since permanent monitoring of a territorial border is not possible, scent marks need to function in the temporary absence of the resident. As chemical signals carried by the scent only last a finite amount of time, each animal needs to revisit territorial boundaries frequently and refresh its own scent marks in order to deter possible intruders. The size of the territory an animal can maintain is thus proportional to the time necessary for an animal to move between its own territorial boundaries. By using an agent-based model to take into account the possible spatio-temporal movement trajectories of individual animals, we show that the emerging territories are the result of a form of collective animal movement where, different to shoaling, flocking or herding, interactions are highly heterogeneous in space and time. The applicability of our hypothesis has been tested with a prototypical territorial animal, the red fox (Vulpes vulpes). Author Summary: How animals succeed in sharing and occupying space in an efficient way has always fascinated biologists. When occupying space involves marking and defending a given area, the animal is said to be territorial. By scent marking the locations that an animal visits, it conveys to a potential intruder that the area is claimed by another animal. Once an intruder encounters a foreign scent, it typically retreats from it to avoid an aggressive response by the resident animal. This is the so-called mechanism of conspecific avoidance. By considering this mechanism and the movement of the individual animals, we predict how territorial patterns are formed and maintained. Data and information on the red fox has served as a benchmark to test our predictions and has provided the experimental support to our theory. The implications of our results reach far beyond behavioural ecology, encompassing fields from epidemiology and conservation biology to social and state boundary dynamics in human society and ‘divide and conquer’ approaches to collective robotics.

Suggested Citation

  • Luca Giuggioli & Jonathan R Potts & Stephen Harris, 2011. "Animal Interactions and the Emergence of Territoriality," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-9, March.
  • Handle: RePEc:plo:pcbi00:1002008
    DOI: 10.1371/journal.pcbi.1002008
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002008
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002008&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barbaro, Alethea B.T. & Chayes, Lincoln & D’Orsogna, Maria R., 2013. "Territorial developments based on graffiti: A statistical mechanics approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 252-270.
    2. Carter, Neil & Levin, Simon & Barlow, Adam & Grimm, Volker, 2015. "Modeling tiger population and territory dynamics using an agent-based approach," Ecological Modelling, Elsevier, vol. 312(C), pages 347-362.
    3. Sells, Sarah N. & Mitchell, Michael S., 2020. "The economics of territory selection," Ecological Modelling, Elsevier, vol. 438(C).
    4. Nicolas Perony & Claudio J Tessone & Barbara König & Frank Schweitzer, 2012. "How Random Is Social Behaviour? Disentangling Social Complexity through the Study of a Wild House Mouse Population," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-11, November.
    5. Frank Marten & Krasimira Tsaneva-Atanasova & Luca Giuggioli, 2012. "Bacterial Secretion and the Role of Diffusive and Subdiffusive First Passage Processes," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-12, August.
    6. Lutnesky, Marvin M.F. & Brown, Thomas R., 2015. "Simulation of movement that potentially maximizes assessment, presence, and defense in territorial animals with varying movement strategies," Ecological Modelling, Elsevier, vol. 313(C), pages 50-58.
    7. Theng, Meryl & Prowse, Thomas A.A. & Delean, Steven & Cassey, Phillip & Bracis, Chloe, 2024. "Integrating resource memory and cue-based territoriality to simulate movement dynamics: a process-explicit and pattern-oriented approach," Ecological Modelling, Elsevier, vol. 487(C).
    8. Thomas O. Richardson & Nathalie Stroeymeyt & Alessandro Crespi & Laurent Keller, 2022. "Two simple movement mechanisms for spatial division of labour in social insects," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.