Author
Listed:
- Adrian W R Serohijos
- Tamás Hegedűs
- John R Riordan
- Nikolay V Dokholyan
Abstract
The absence of a functional ATP Binding Cassette (ABC) protein called the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) from apical membranes of epithelial cells is responsible for cystic fibrosis (CF). Over 90% of CF patients carry at least one mutant allele with deletion of phenylalanine at position 508 located in the N-terminal nucleotide binding domain (NBD1). Biochemical and cell biological studies show that the ΔF508 mutant exhibits inefficient biosynthetic maturation and susceptibility to degradation probably due to misfolding of NBD1 and the resultant misassembly of other domains. However, little is known about the direct effect of the Phe508 deletion on the NBD1 folding, which is essential for rational design strategies of cystic fibrosis treatment. Here we show that the deletion of Phe508 alters the folding dynamics and kinetics of NBD1, thus possibly affecting the assembly of the complete CFTR. Using molecular dynamics simulations, we find that meta-stable intermediate states appearing on wild type and mutant folding pathways are populated differently and that their kinetic accessibilities are distinct. The structural basis of the increased misfolding propensity of the ΔF508 NBD1 mutant is the perturbation of interactions in residue pairs Q493/P574 and F575/F578 found in loop S7-H6. As a proof-of-principle that the S7-H6 loop conformation can modulate the folding kinetics of NBD1, we virtually design rescue mutations in the identified critical interactions to force the S7-H6 loop into the wild type conformation. Two redesigned NBD1-ΔF508 variants exhibited significantly higher folding probabilities than the original NBD1-ΔF508, thereby partially rescuing folding ability of the NBD1-ΔF508 mutant. We propose that these observed defects in folding kinetics of mutant NBD1 may also be modulated by structures separate from the 508 site. The identified structural determinants of increased misfolding propensity of NBD1-ΔF508 are essential information in correcting this pathogenic mutant.Author Summary: Deletion of a single residue, phenylalanine at position 508, in the first nucleotide binding domain (NBD1) of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is present in approximately 90% of cystic fibrosis (CF) patients. Experiments show that this mutant protein exhibits inefficient biosynthetic maturation and susceptibility to degradation probably due to misfolding of NBD1 and the resultant incorrect interactions of other domains. However, little is known about the direct effect of the Phe508 deletion on NBD1 folding. Here, using molecular dynamics simulations of NBD1-WT, NBD1-F508A, and NBD1-ΔF508, we show that the deletion of Phe508 indeed alters the kinetics of NBD1 folding. We also find that the intermediate states appearing on wild type and mutant folding pathways are populated differently and that their kinetic accessibilities are distinct. Moreover, we identified critical interactions not necessarily localized near position 508, such as Q493/P574 and F575/F587, to be significant structural elements influencing the kinetic difference between wild type and mutant NBD1. We propose that these observed alterations in folding kinetics of mutant NBD1 result in misassembly of the whole multi-domain protein, thereby causing its premature degradation.
Suggested Citation
Adrian W R Serohijos & Tamás Hegedűs & John R Riordan & Nikolay V Dokholyan, 2008.
"Diminished Self-Chaperoning Activity of the ΔF508 Mutant of CFTR Results in Protein Misfolding,"
PLOS Computational Biology, Public Library of Science, vol. 4(2), pages 1-8, February.
Handle:
RePEc:plo:pcbi00:1000008
DOI: 10.1371/journal.pcbi.1000008
Download full text from publisher
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.
- Jere P. Segrest & Chongren Tang & Hyun D. Song & Martin K. Jones & W. Sean Davidson & Stephen G. Aller & Jay W. Heinecke, 2022.
"ABCA1 is an extracellular phospholipid translocase,"
Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Megan L O’Mara & Alan E Mark, 2014.
"Structural Characterization of Two Metastable ATP-Bound States of P-Glycoprotein,"
PLOS ONE, Public Library of Science, vol. 9(3), pages 1-14, March.
- Lin Yu & Xin Xu & Wan-Zhen Chua & Hao Feng & Zheng Ser & Kai Shao & Jian Shi & Yumei Wang & Zongli Li & Radoslaw M. Sobota & Lok-To Sham & Min Luo, 2023.
"Structural basis of peptide secretion for Quorum sensing by ComA,"
Nature Communications, Nature, vol. 14(1), pages 1-17, December.
- Sheng Cao & Yihu Yang & Lili He & Yumo Hang & Xiaodong Yan & Hui Shi & Jiaquan Wu & Zhuqing Ouyang, 2023.
"Cryo-EM structures of mitochondrial ABC transporter ABCB10 in apo and biliverdin-bound form,"
Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Tianqi Zhang & Jixing Lyu & Bowei Yang & Sangho D. Yun & Elena Scott & Minglei Zhao & Arthur Laganowsky, 2024.
"Native mass spectrometry and structural studies reveal modulation of MsbA–nucleotide interactions by lipids,"
Nature Communications, Nature, vol. 15(1), pages 1-11, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000008. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.