IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/0040014.html
   My bibliography  Save this article

Filling-In and Suppression of Visual Perception from Context: A Bayesian Account of Perceptual Biases by Contextual Influences

Author

Listed:
  • Li Zhaoping
  • Li Jingling

Abstract

Visual object recognition and sensitivity to image features are largely influenced by contextual inputs. We study influences by contextual bars on the bias to perceive or infer the presence of a target bar, rather than on the sensitivity to image features. Human observers judged from a briefly presented stimulus whether a target bar of a known orientation and shape is present at the center of a display, given a weak or missing input contrast at the target location with or without a context of other bars. Observers are more likely to perceive a target when the context has a weaker rather than stronger contrast. When the context can perceptually group well with the would-be target, weak contrast contextual bars bias the observers to perceive a target relative to the condition without contexts, as if to fill in the target. Meanwhile, high-contrast contextual bars, regardless of whether they group well with the target, bias the observers to perceive no target. A Bayesian model of visual inference is shown to account for the data well, illustrating that the context influences the perception in two ways: (1) biasing observers' prior belief that a target should be present according to visual grouping principles, and (2) biasing observers' internal model of the likely input contrasts caused by a target bar. According to this model, our data suggest that the context does not influence the perceived target contrast despite its influence on the bias to perceive the target's presence, thereby suggesting that cortical areas beyond the primary visual cortex are responsible for the visual inferences.: We study how visual perception of a target bar can be biased by contextual bars in the image, and how a Bayesian model of object inference can account for the data. Human observers are more likely to perceive a target bar when the contextual contrast, i.e., the luminance difference between the contextual bars and background, is weaker rather than stronger. Relative to the situation without the context, they are biased to perceive the target in a context of weak contrast when the target can perceptually group well with the context, as if the context fills in the target. Meanwhile, they are biased not to perceive the target in a context of strong contrast, as if the context suppresses the perception, regardless of whether it could perceptually group well with the would-be target. The Bayesian model illustrates that the context influences the perception by biasing (1) observers' prior belief that a target should be present and (2) observers' internal model of the likely input contrasts from a target bar. Our data suggest that brain areas beyond the primary visual cortex along the visual pathway are responsible for inferring object causes for input images.

Suggested Citation

  • Li Zhaoping & Li Jingling, 2008. "Filling-In and Suppression of Visual Perception from Context: A Bayesian Account of Perceptual Biases by Contextual Influences," PLOS Computational Biology, Public Library of Science, vol. 4(2), pages 1-13, February.
  • Handle: RePEc:plo:pcbi00:0040014
    DOI: 10.1371/journal.pcbi.0040014
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0040014
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.0040014&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.0040014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Uri Polat & Keiko Mizobe & Mark W. Pettet & Takuji Kasamatsu & Anthony M. Norcia, 1998. "Collinear stimuli regulate visual responses depending on cell's contrast threshold," Nature, Nature, vol. 391(6667), pages 580-584, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li Zhaoping & Li Zhe, 2015. "Primary Visual Cortex as a Saliency Map: A Parameter-Free Prediction and Its Test by Behavioral Data," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-39, October.
    2. Ruben Coen-Cagli & Peter Dayan & Odelia Schwartz, 2012. "Cortical Surround Interactions and Perceptual Salience via Natural Scene Statistics," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-18, March.
    3. Sophie Hall & Patrick Bourke & Kun Guo, 2014. "Low Level Constraints on Dynamic Contour Path Integration," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-9, June.
    4. Yoram S Bonneh & Tobias H Donner & Alexander Cooperman & David J Heeger & Dov Sagi, 2014. "Motion-Induced Blindness and Troxler Fading: Common and Different Mechanisms," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-8, March.
    5. Udo A Ernst & Sunita Mandon & Nadja Schinkel–Bielefeld & Simon D Neitzel & Andreas K Kreiter & Klaus R Pawelzik, 2012. "Optimality of Human Contour Integration," PLOS Computational Biology, Public Library of Science, vol. 8(5), pages 1-17, May.
    6. Xaq Pitkow & Haim Sompolinsky & Markus Meister, 2007. "A Neural Computation for Visual Acuity in the Presence of Eye Movements," PLOS Biology, Public Library of Science, vol. 5(12), pages 1-14, December.
    7. Malte Persike & GĂĽnter Meinhardt, 2015. "Effects of Spatial Frequency Similarity and Dissimilarity on Contour Integration," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-19, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:0040014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.