IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/0010015.html
   My bibliography  Save this article

Recognition of Unknown Conserved Alternatively Spliced Exons

Author

Listed:
  • Uwe Ohler
  • Noam Shomron
  • Christopher B Burge

Abstract

The split structure of most mammalian protein-coding genes allows for the potential to produce multiple different mRNA and protein isoforms from a single gene locus through the process of alternative splicing (AS). We propose a computational approach called UNCOVER based on a pair hidden Markov model to discover conserved coding exonic sequences subject to AS that have so far gone undetected. Applying UNCOVER to orthologous introns of known human and mouse genes predicts skipped exons or retained introns present in both species, while discriminating them from conserved noncoding sequences. The accuracy of the model is evaluated on a curated set of genes with known conserved AS events. The prediction of skipped exons in the ~1% of the human genome represented by the ENCODE regions leads to more than 50 new exon candidates. Five novel predicted AS exons were validated by RT-PCR and sequencing analysis of 15 introns with strong UNCOVER predictions and lacking EST evidence. These results imply that a considerable number of conserved exonic sequences and associated isoforms are still completely missing from the current annotation of known genes. UNCOVER also identifies a small number of candidates for conserved intron retention.: Alternative splicing is a process in which more than one protein variant can be produced from one gene: Specific parts of the mRNA precursor are included or excluded during the processing into the mature transcript. It is very prevalent in mammalian genomes, and variants are often specific for particular cell types, developmental states, or environmental changes. The identification of such variants has until recently relied solely on the sequencing and comparison of expressed sequence tags (ESTs), but the number of available ESTs is not large enough to cover all variants under all conditions.

Suggested Citation

  • Uwe Ohler & Noam Shomron & Christopher B Burge, 2005. "Recognition of Unknown Conserved Alternatively Spliced Exons," PLOS Computational Biology, Public Library of Science, vol. 1(2), pages 1-1, July.
  • Handle: RePEc:plo:pcbi00:0010015
    DOI: 10.1371/journal.pcbi.0010015
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0010015
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.0010015&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.0010015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tom Maniatis & Bosiljka Tasic, 2002. "Alternative pre-mRNA splicing and proteome expansion in metazoans," Nature, Nature, vol. 418(6894), pages 236-243, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Cheng & Yamei Yu & Xingyu Wang & Xi Zheng & Ting Liu & Daojun Hu & Yongfeng Jin & Ying Lai & Tian-Min Fu & Qiang Chen, 2023. "Structural basis for the self-recognition of sDSCAM in Chelicerata," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Justin Bo-Kai Hsu & Neil Arvin Bretaña & Tzong-Yi Lee & Hsien-Da Huang, 2011. "Incorporating Evolutionary Information and Functional Domains for Identifying RNA Splicing Factors in Humans," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-11, November.
    3. André Corvelo & Martina Hallegger & Christopher W J Smith & Eduardo Eyras, 2010. "Genome-Wide Association between Branch Point Properties and Alternative Splicing," PLOS Computational Biology, Public Library of Science, vol. 6(11), pages 1-13, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:0010015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.