IDEAS home Printed from https://ideas.repec.org/a/pes/ierequ/v12y2017i4p775-791.html
   My bibliography  Save this article

Logit and Probit application for the prediction of bankruptcy in Slovak companies

Author

Listed:
  • Maria Kovacova

    (University of Zilina, Slovakia)

  • Tomas Kliestik

    (University of Zilina, Slovakia)

Abstract

Research background: Prediction of bankruptcy is an issue of interest of various researchers and practitioners since the first study dedicated to this topic was published in 1932. Finding the suitable bankruptcy prediction model is the task for economists and analysts from all over the world. forecasting model using. Despite a large number of various models, which have been created by using different methods with the aim to achieve the best results, it is still challenging to predict bankruptcy risk, as corporations have become more global and more complex. Purpose of the article: The aim of the presented study is to construct, via an empirical study of relevant literature and application of suitable chosen mathematical statistical methods, models for bankruptcy prediction of Slovak companies and provide the comparison of overall prediction ability of the two developed models. Methods: The research was conducted on the data set of Slovak corporations covering the period of the year 2015, and two mathematical statistical methods were applied. The methods are logit and probit, which are both symmetric binary choice models, also known as conditional probability models. On the other hand, these methods show some significant differences in process of model formation, as well as in achieved results. Findings & Value added: Given the fact that mostly discriminant analysis and logistic regression are used for the construction of bankruptcy prediction models, we have focused our attention on the development bankruptcy prediction model in the Slovak Republic via logistic regression and probit. The results of the study suggest that the model based on a logit functions slightly outperforms the classification accuracy of probit model. Differences were obtained also in the detection of the most significant predictors of bankruptcy prediction in these types of models constructed in Slovak companies.

Suggested Citation

  • Maria Kovacova & Tomas Kliestik, 2017. "Logit and Probit application for the prediction of bankruptcy in Slovak companies," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 12(4), pages 775-791, December.
  • Handle: RePEc:pes:ierequ:v:12:y:2017:i:4:p:775-791
    DOI: 10.24136/eq.v12i4.40
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.24136/eq.v12i4.40
    Download Restriction: no

    File URL: https://libkey.io/10.24136/eq.v12i4.40?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gheorghe H. POPESCU & George LÄ‚ZÄ‚ROIU & Maria KOVACOVA & Katarina VALASKOVA & Jana MAJEROVA, 2020. "Urban Sustainability Analytics: Harnessing Big Data For Smart City Planning And Design," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 15(2), pages 39-48, May.
    2. Lucia Svabova & Lucia Michalkova & Marek Durica & Elvira Nica, 2020. "Business Failure Prediction for Slovak Small and Medium-Sized Companies," Sustainability, MDPI, vol. 12(11), pages 1-14, June.
    3. Svabova Lucia & Durica Marek & Podhorska Ivana, 2018. "Prediction of Default of Small Companies in the Slovak Republic," Economics and Culture, Sciendo, vol. 15(1), pages 88-95, June.
    4. Jaroslav Mazanec & Viera Bartosova, 2021. "Prediction Model as Sustainability Tool for Assessing Financial Status of Non-Profit Organizations in the Slovak Republic," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    5. Fábio de Oliveira Neves & Henrique Ewbank & José Arnaldo Frutuoso Roveda & Andrea Trianni & Fernando Pinhabel Marafão & Sandra Regina Monteiro Masalskiene Roveda, 2022. "Economic and Production-Related Implications for Industrial Energy Efficiency: A Logistic Regression Analysis on Cross-Cutting Technologies," Energies, MDPI, vol. 15(4), pages 1-19, February.
    6. Katarina Valaskova & Pavol Durana & Peter Adamko & Jaroslav Jaros, 2020. "Financial Compass for Slovak Enterprises: Modeling Economic Stability of Agricultural Entities," JRFM, MDPI, vol. 13(5), pages 1-16, May.
    7. Beata Gavurova & Sylvia Jencova & Radovan Bacik & Marta Miskufova & Stanislav Letkovsky, 2022. "Artificial intelligence in predicting the bankruptcy of non-financial corporations," Oeconomia Copernicana, Institute of Economic Research, vol. 13(4), pages 1215-1251, December.
    8. Elvira NICA & Vladimir KONECNY & Milos POLIAK & Tomas KLIESTIK, 2020. "Big Data Management Of Smart Sustainable Cities: Networked Digital Technologies And Automated Algorithmic Decision-Making Processes," Management Research and Practice, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 12(2), pages 48-57, June.
    9. Kian Tehranian, 2023. "Can Machine Learning Catch Economic Recessions Using Economic and Market Sentiments?," Papers 2308.16200, arXiv.org.
    10. Elena Gregova & Katarina Valaskova & Peter Adamko & Milos Tumpach & Jaroslav Jaros, 2020. "Predicting Financial Distress of Slovak Enterprises: Comparison of Selected Traditional and Learning Algorithms Methods," Sustainability, MDPI, vol. 12(10), pages 1-17, May.
    11. Katarina Valaskova & Dominika Gajdosikova & Jaroslav Belas, 2023. "Bankruptcy prediction in the post-pandemic period: A case study of Visegrad Group countries," Oeconomia Copernicana, Institute of Economic Research, vol. 14(1), pages 253-293, March.
    12. Jaroslav Mazanec & Viera Bartosova & Patrik Bohm, 2022. "Logit Model for Estimating Non-Profit Organizations’ Financial Status as a Part of Non-Profit Financial Management," Mathematics, MDPI, vol. 10(13), pages 1-18, June.
    13. Bogdan POPA & Jenica POPESCU, 2023. "New Approaches to Financial and Bankruptcy Risk," Finante - provocarile viitorului (Finance - Challenges of the Future), University of Craiova, Faculty of Economics and Business Administration, vol. 1(25), pages 8-13, November.
    14. Michal Pavlicko & Marek Durica & Jaroslav Mazanec, 2021. "Ensemble Model of the Financial Distress Prediction in Visegrad Group Countries," Mathematics, MDPI, vol. 9(16), pages 1-26, August.
    15. Lenka Papíková & Mário Papík, 2022. "Effects of classification, feature selection, and resampling methods on bankruptcy prediction of small and medium‐sized enterprises," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 29(4), pages 254-281, October.
    16. Dorota Czerwińska-Kayzer & Joanna Florek & Ryszard Staniszewski & Dariusz Kayzer, 2021. "Application of Canonical Variate Analysis to Compare Different Groups of Food Industry Companies in Terms of Financial Liquidity and Profitability," Energies, MDPI, vol. 14(15), pages 1-16, August.
    17. Maryna Brychko & Tetyana Vasilyeva & Zuzana Rowland & Serhiy Lyeonov, 2021. "Does the real estate market behavior predict the trust crisis in the financial sector? The case of the ECB and the Euro," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 16(4), pages 711-740, December.
    18. Katarina Valaskova & Tomas Kliestik & Lucia Svabova & Peter Adamko, 2018. "Financial Risk Measurement and Prediction Modelling for Sustainable Development of Business Entities Using Regression Analysis," Sustainability, MDPI, vol. 10(7), pages 1-15, June.
    19. Michal Pavlicko & Jaroslav Mazanec, 2022. "Minimalistic Logit Model as an Effective Tool for Predicting the Risk of Financial Distress in the Visegrad Group," Mathematics, MDPI, vol. 10(8), pages 1-22, April.

    More about this item

    Keywords

    bankruptcy; logit; probit; Slovak companies; financial health;
    All these keywords.

    JEL classification:

    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pes:ierequ:v:12:y:2017:i:4:p:775-791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adam P. Balcerzak (email available below). General contact details of provider: https://edirc.repec.org/data/ibgtopl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.