IDEAS home Printed from https://ideas.repec.org/a/pal/marecl/v26y2024i4d10.1057_s41278-024-00304-1.html
   My bibliography  Save this article

Prediction of delivery truck arrivals at container terminals: an ensemble deep learning model

Author

Listed:
  • Na Li

    (Dalian Maritime University)

  • Ziyiyang Wang

    (Dalian Maritime University)

  • Xin Lin

    (Zhejiang University)

  • Haotian Sheng

    (South China University of Technology)

Abstract

Container terminal operators must balance external truck arrivals to the terminal and the prompt availability of yard resources. More accurate prediction of delivery truck arrivals is a crucial factor for the synergistic scheduling of yard operations. This paper proposes a novel ensemble deep learning approach to predict truck arrivals in a flexible period, with the span varying from one hour to twenty-four hours. With real data from the Yantian International Container Terminal in Southern China, multiple external nonlinear features are included in our deep learning model. Experiments demonstrate the effectiveness of the model which, among others, reveals the delivery pattern of shippers and truck arrival fluctuations. The decomposition of route-based prediction with cut-off time improves accuracy significantly. The results can be fed into the terminal operating system to improve the real-time scheduling of terminal operations. Furthermore, the announcement of predictions would allow customers to adjust their arrival time to avoid peak hours and this can be a good substitute or supplement to a truck appointment system.

Suggested Citation

  • Na Li & Ziyiyang Wang & Xin Lin & Haotian Sheng, 2024. "Prediction of delivery truck arrivals at container terminals: an ensemble deep learning model," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 26(4), pages 658-684, December.
  • Handle: RePEc:pal:marecl:v:26:y:2024:i:4:d:10.1057_s41278-024-00304-1
    DOI: 10.1057/s41278-024-00304-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41278-024-00304-1
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41278-024-00304-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rodrigues, Filipe & Agra, Agostinho, 2021. "An exact robust approach for the integrated berth allocation and quay crane scheduling problem under uncertain arrival times," European Journal of Operational Research, Elsevier, vol. 295(2), pages 499-516.
    2. Chen, Chengjie & Min, Fuhong & Zhang, Yunzhen & Bao, Han, 2023. "ReLU-type Hopfield neural network with analog hardware implementation," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    3. Katta G. Murty & Yat-wah Wan & Jiyin Liu & Mitchell M. Tseng & Edmond Leung & Kam-Keung Lai & Herman W. C. Chiu, 2005. "Hongkong International Terminals Gains Elastic Capacity Using a Data-Intensive Decision-Support System," Interfaces, INFORMS, vol. 35(1), pages 61-75, February.
    4. Guerrero, David & Letrouit, Lucie & Pais-Montes, Carlos, 2022. "The container transport system during Covid-19: An analysis through the prism of complex networks," Transport Policy, Elsevier, vol. 115(C), pages 113-125.
    5. Na Li & Gang Chen & Manwo Ng & Wayne K. Talley & Zhihong Jin, 2020. "Optimized appointment scheduling for export container deliveries at marine terminals," Maritime Policy & Management, Taylor & Francis Journals, vol. 47(4), pages 456-478, June.
    6. Jiang, Xin Jia & Jin, Jian Gang, 2017. "A branch-and-price method for integrated yard crane deployment and container allocation in transshipment yards," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 62-75.
    7. Jin, Jiahuan & Ma, Mingyu & Jin, Huan & Cui, Tianxiang & Bai, Ruibin, 2023. "Container terminal daily gate in and gate out forecasting using machine learning methods," Transport Policy, Elsevier, vol. 132(C), pages 163-174.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    2. Chen, Xiaojing & Li, Feng & Jia, Bin & Wu, Jianjun & Gao, Ziyou & Liu, Ronghui, 2021. "Optimizing storage location assignment in an automotive Ro-Ro terminal," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 249-281.
    3. Chen, Xiongjian & Wang, Ning & Wang, Yiteng & Wu, Huagan & Xu, Quan, 2023. "Memristor initial-offset boosting and its bifurcation mechanism in a memristive FitzHugh-Nagumo neuron model with hidden dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    4. Zhang, Di & Chen, Feng & Mei, Ziqiao, 2023. "Optimization on joint scheduling of yard allocation and transfer manpower assignment for automobile RO-RO terminal," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    5. Leonard Heilig & Stefan Voß, 0. "Information systems in seaports: a categorization and overview," Information Technology and Management, Springer, vol. 0, pages 1-23.
    6. Zhen, Lu & Zhuge, Dan & Wang, Shuaian & Wang, Kai, 2022. "Integrated berth and yard space allocation under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 1-27.
    7. Michael F. Gorman & John-Paul Clarke & Amir Hossein Gharehgozli & Michael Hewitt & René de Koster & Debjit Roy, 2014. "State of the Practice: A Review of the Application of OR/MS in Freight Transportation," Interfaces, INFORMS, vol. 44(6), pages 535-554, December.
    8. Xin Jia Jiang & Yanhua Xu & Chenhao Zhou & Ek Peng Chew & Loo Hay Lee, 2018. "Frame Trolley Dispatching Algorithm for the Frame Bridge Based Automated Container Terminal," Transportation Science, INFORMS, vol. 52(3), pages 722-737, June.
    9. Bokyung Kim & Geunsub Kim & Moohong Kang, 2022. "Study on Comparing the Performance of Fully Automated Container Terminals during the COVID-19 Pandemic," Sustainability, MDPI, vol. 14(15), pages 1-13, August.
    10. Gao, Yinping & Zhen, Lu, 2024. "A decision framework for decomposed stowage planning for containers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    11. Raka Jovanovic & Milan Tuba & Stefan Voß, 2017. "A multi-heuristic approach for solving the pre-marshalling problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(1), pages 1-28, March.
    12. Leonard Heilig & Stefan Voß, 2017. "Information systems in seaports: a categorization and overview," Information Technology and Management, Springer, vol. 18(3), pages 179-201, September.
    13. Marc-Antoine Faure & Bárbara Polo Martin & Fabio Cremaschini & César Ducruet, 2024. "Shipping Trade and Geopolitical Turmoils: The Case of the Ukrainian Maritime Network," EconomiX Working Papers 2024-24, University of Paris Nanterre, EconomiX.
    14. Jia, Shuai & Li, Chung-Lun & Meng, Qiang, 2024. "The dry dock scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 181(C).
    15. Cheng Hong & Yufang Guo & Yuhong Wang & Tingting Li, 2023. "The Integrated Scheduling Optimization for Container Handling by Using Driverless Electric Truck in Automated Container Terminal," Sustainability, MDPI, vol. 15(6), pages 1-22, March.
    16. Wang, Chong & Liu, Kaiyuan & Zhang, Canrong & Miao, Lixin, 2024. "Distributionally robust chance-constrained optimization for the integrated berth allocation and quay crane assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 182(C).
    17. Wang, Mengyao & Zhou, Chenhao & Wang, Aihu, 2022. "A cluster-based yard template design integrated with yard crane deployment using a placement heuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    18. Huang, Dong & Grifoll, Manel & Sanchez-Espigares, Jose A. & Zheng, Pengjun & Feng, Hongxiang, 2022. "Hybrid approaches for container traffic forecasting in the context of anomalous events: The case of the Yangtze River Delta region in the COVID-19 pandemic," Transport Policy, Elsevier, vol. 128(C), pages 1-12.
    19. Hairong Lin & Chunhua Wang & Fei Yu & Jingru Sun & Sichun Du & Zekun Deng & Quanli Deng, 2023. "A Review of Chaotic Systems Based on Memristive Hopfield Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    20. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:marecl:v:26:y:2024:i:4:d:10.1057_s41278-024-00304-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.