IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v62y2011i4d10.1057_jors.2009.148.html
   My bibliography  Save this article

Mean-variance portfolio rebalancing with transaction costs and funding changes

Author

Listed:
  • J J Glen

    (University of Edinburgh Business School)

Abstract

Investment portfolios should be rebalanced to take account of changing market conditions and changes in funding. Standard mean-variance (MV) portfolio selection methods are not appropriate for portfolio rebalancing, as the initial portfolio, change in funding and transaction costs are not considered. A quadratic mixed integer programming portfolio rebalancing model, which takes account of these factors is developed in this paper. The transaction costs in this portfolio rebalancing model are composed of fixed charges and variable costs, including the market impact costs associated with large market trades of individual securities, where these variable transaction costs are assumed to be non-linear functions of traded value. The use of this model is demonstrated and it is shown that when initial portfolio, funding changes and transaction costs are taken into account in portfolio construction and rebalancing, MV efficient portfolios that include risk-free lending do not have the structure expected from portfolio theory.

Suggested Citation

  • J J Glen, 2011. "Mean-variance portfolio rebalancing with transaction costs and funding changes," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(4), pages 667-676, April.
  • Handle: RePEc:pal:jorsoc:v:62:y:2011:i:4:d:10.1057_jors.2009.148
    DOI: 10.1057/jors.2009.148
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/jors.2009.148
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jors.2009.148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Christopher Darnell & Robert Soucy, 1999. "Portfolio Construction Through Mixed-Integer Programming at Grantham, Mayo, Van Otterloo and Company," Interfaces, INFORMS, vol. 29(1), pages 49-66, February.
    2. Bruce I. Jacobs & Kenneth N. Levy & Harry M. Markowitz, 2005. "Portfolio Optimization with Factors, Scenarios, and Realistic Short Positions," Operations Research, INFORMS, vol. 53(4), pages 586-599, August.
    3. Michael J. Best & Jaroslava Hlouskova, 2005. "An Algorithm for Portfolio Optimization with Transaction Costs," Management Science, INFORMS, vol. 51(11), pages 1676-1688, November.
    4. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    5. Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
    6. Andre F. Perold, 1984. "Large-Scale Portfolio Optimization," Management Science, INFORMS, vol. 30(10), pages 1143-1160, October.
    7. Kumar Muthuraman & Haining Zha, 2008. "Simulation‐Based Portfolio Optimization For Large Portfolios With Transaction Costs," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 115-134, January.
    8. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    9. Pogue, G A, 1970. "An Extension of the Markowitz Portfolio Selection Model to Include Variable Transactions' Costs, Short Sales, Leverage Policies and Taxes," Journal of Finance, American Finance Association, vol. 25(5), pages 1005-1027, December.
    10. MOSSIN, Jan, 1968. "Optimal multiperiod portfolio policies," LIDAM Reprints CORE 19, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. N. J. Jobst & M. D. Horniman & C. A. Lucas & G. Mitra, 2001. "Computational aspects of alternative portfolio selection models in the presence of discrete asset choice constraints," Quantitative Finance, Taylor & Francis Journals, vol. 1(5), pages 489-501.
    12. Robert Almgren, 2003. "Optimal execution with nonlinear impact functions and trading-enhanced risk," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(1), pages 1-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Boďa & Mária Kanderová, 2020. "Performance of Six Sigma Rebalancing for Portfolios Mixing Polar Investment Styles," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 68(1), pages 139-155.
    2. Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
    3. Sabastine Mushori & Delson Chikobvu, 2018. "Investment Opportunities, Uncertain Implicit Transaction Costs and Maximum Downside Risk in Dynamic Stochastic Financial Optimization," International Journal of Economics and Financial Issues, Econjournals, vol. 8(4), pages 256-264.
    4. Woodside-Oriakhi, M. & Lucas, C. & Beasley, J.E., 2013. "Portfolio rebalancing with an investment horizon and transaction costs," Omega, Elsevier, vol. 41(2), pages 406-420.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Briec, Walter & Kerstens, Kristiaan, 2009. "Multi-horizon Markowitz portfolio performance appraisals: A general approach," Omega, Elsevier, vol. 37(1), pages 50-62, February.
    2. Zhang, Xili & Zhang, Weiguo & Xiao, Weilin, 2013. "Multi-period portfolio optimization under possibility measures," Economic Modelling, Elsevier, vol. 35(C), pages 401-408.
    3. Bauder, David & Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2020. "Bayesian inference of the multi-period optimal portfolio for an exponential utility," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    4. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2015. "On the exact solution of the multi-period portfolio choice problem for an exponential utility under return predictability," European Journal of Operational Research, Elsevier, vol. 246(2), pages 528-542.
    5. Tiago P. Filomena & Miguel A. Lejeune, 2014. "Warm-Start Heuristic for Stochastic Portfolio Optimization with Fixed and Proportional Transaction Costs," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 308-329, April.
    6. Woodside-Oriakhi, M. & Lucas, C. & Beasley, J.E., 2013. "Portfolio rebalancing with an investment horizon and transaction costs," Omega, Elsevier, vol. 41(2), pages 406-420.
    7. Castellano, Rosella & Cerqueti, Roy, 2014. "Mean–Variance portfolio selection in presence of infrequently traded stocks," European Journal of Operational Research, Elsevier, vol. 234(2), pages 442-449.
    8. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    9. Khodamoradi, T. & Salahi, M. & Najafi, A.R., 2020. "Robust CCMV model with short selling and risk-neutral interest rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    10. Jan Kallsen & Johannes Muhle-Karbe, 2013. "The General Structure of Optimal Investment and Consumption with Small Transaction Costs," Papers 1303.3148, arXiv.org, revised May 2015.
    11. Chen, Wei & Zhang, Wei-Guo, 2010. "The admissible portfolio selection problem with transaction costs and an improved PSO algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2070-2076.
    12. Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2015. "Linear vs. quadratic portfolio selection models with hard real-world constraints," Computational Management Science, Springer, vol. 12(3), pages 345-370, July.
    13. Walter Briec & Kristiaan Kerstens & Octave Jokung, 2007. "Mean-Variance-Skewness Portfolio Performance Gauging: A General Shortage Function and Dual Approach," Management Science, INFORMS, vol. 53(1), pages 135-149, January.
    14. Benjamin M. Friedman, 1980. "The Effect of Shifting Wealth Ownership on the Term Structure of Interest Rates," NBER Working Papers 0239, National Bureau of Economic Research, Inc.
    15. Yuichi Takano & Keisuke Nanjo & Noriyoshi Sukegawa & Shinji Mizuno, 2015. "Cutting plane algorithms for mean-CVaR portfolio optimization with nonconvex transaction costs," Computational Management Science, Springer, vol. 12(2), pages 319-340, April.
    16. Willem H. Buiter, 2003. "James Tobin: An Appreciation of his Contribution to Economics," Economic Journal, Royal Economic Society, vol. 113(491), pages 585-631, November.
    17. Chen, Zhi-ping & Li, Gang & Guo, Ju-e, 2013. "Optimal investment policy in the time consistent mean–variance formulation," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 145-156.
    18. Leippold, Markus & Trojani, Fabio & Vanini, Paolo, 2004. "A geometric approach to multiperiod mean variance optimization of assets and liabilities," Journal of Economic Dynamics and Control, Elsevier, vol. 28(6), pages 1079-1113, March.
    19. Arenas Parra, M. & Bilbao Terol, A. & Rodriguez Uria, M. V., 2001. "A fuzzy goal programming approach to portfolio selection," European Journal of Operational Research, Elsevier, vol. 133(2), pages 287-297, January.
    20. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2013. "On the equivalence of quadratic optimization problems commonly used in portfolio theory," European Journal of Operational Research, Elsevier, vol. 229(3), pages 637-644.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:62:y:2011:i:4:d:10.1057_jors.2009.148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.