IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v62y2011i1d10.1057_jors.2009.165.html
   My bibliography  Save this article

Maintenance models based on the np control charts with respect to the sampling interval

Author

Listed:
  • W Wang

    (Salford Business School, University of Salford
    City University of Hong Kong)

Abstract

This paper develops models for the maintenance of a system based on np control charts with respect to the sampling interval. At any given time, the system is assumed to be in one of the three possible states; in-control, out-of-control and failure. If the control chart signals, suggesting the possibility of an out-of-control state, an investigation will be carried out. We assume that this investigation is perfect in that it reveals the true state of the system. If an assignable cause is confirmed by the investigation, a minor repair will be carried out to remove the cause. If the assignable cause is not attended to, it will gradually develop into a failure. When a failure occurs, the system cannot operate and a major repair is needed. We discuss three models depending on the assumptions related to the renewal mechanism, the occurrence of failures, and the time between minor repairs. The paper seeks to optimise the performance of such a system in terms of the sampling interval. Geometric processes are utilised for modelling the lifetimes between minor repairs if the minor repair cannot bring the system back to an as good as new condition. The expected cost per unit time for maintaining the systems with respect to the sampling interval of the control chart is obtained. Numerical examples are conducted to demonstrate the applicability of the methodology derived.

Suggested Citation

  • W Wang, 2011. "Maintenance models based on the np control charts with respect to the sampling interval," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 124-133, January.
  • Handle: RePEc:pal:jorsoc:v:62:y:2011:i:1:d:10.1057_jors.2009.165
    DOI: 10.1057/jors.2009.165
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/jors.2009.165
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jors.2009.165?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Wenbin, 2009. "An inspection model for a process with two types of inspections and repairs," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 526-533.
    2. A H Christer, 1999. "Developments in delay time analysis for modelling plant maintenance," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(11), pages 1120-1137, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hasan Rasay & Fariba Azizi & Farnoosh Naderkhani, 2024. "A mathematical maintenance model for a production system subject to deterioration according to a stochastic geometric process," Annals of Operations Research, Springer, vol. 340(1), pages 451-478, September.
    2. Wang, Wenbin, 2012. "An overview of the recent advances in delay-time-based maintenance modelling," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 165-178.
    3. Sinisterra, Wilfrido Quiñones & Lima, Victor Hugo Resende & Cavalcante, Cristiano Alexandre Virginio & Aribisala, Adetoye Ayokunle, 2023. "A delay-time model to integrate the sequence of resumable jobs, inspection policy, and quality for a single-component system," Reliability Engineering and System Safety, Elsevier, vol. 230(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wenbin & Banjevic, Dragan & Pecht, Michael, 2010. "A multi-component and multi-failure mode inspection model based on the delay time concept," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 912-920.
    2. Flage, Roger, 2014. "A delay time model with imperfect and failure-inducing inspections," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 1-12.
    3. Wang, Wenbin & Banjevic, Dragan, 2012. "Ergodicity of forward times of the renewal process in a block-based inspection model using the delay time concept," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 1-7.
    4. Wang, Wenbin, 2011. "An inspection model based on a three-stage failure process," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 838-848.
    5. Wang, Wenbin, 2012. "An overview of the recent advances in delay-time-based maintenance modelling," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 165-178.
    6. van Oosterom, C.D. & Elwany, A.H. & Çelebi, D. & van Houtum, G.J., 2014. "Optimal policies for a delay time model with postponed replacement," European Journal of Operational Research, Elsevier, vol. 232(1), pages 186-197.
    7. Peng, Rui & Liu, Bin & Zhai, Qingqing & Wang, Wenbin, 2019. "Optimal maintenance strategy for systems with two failure modes," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 624-632.
    8. Zhang, Fengxia & Shen, Jingyuan & Liao, Haitao & Ma, Yizhong, 2021. "Optimal preventive maintenance policy for a system subject to two-phase imperfect inspections," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    9. P A Scarf & H A Majid, 2011. "Modelling warranty extensions: a case study in the automotive industry," Journal of Risk and Reliability, , vol. 225(2), pages 251-265, June.
    10. Xuejuan Liu & Wenbin Wang & Rui Peng & Fei Zhao, 2015. "A delay-time-based inspection model for parallel systems," Journal of Risk and Reliability, , vol. 229(6), pages 556-567, December.
    11. Driessen, J.P.C. & Peng, H. & van Houtum, G.J., 2017. "Maintenance optimization under non-constant probabilities of imperfect inspections," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 115-123.
    12. J Ansell & T Archibald & J Dagpunar & L Thomas & P Abell & D Duncalf, 2003. "Analysing maintenance data to gain insight into systems performance," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(4), pages 343-349, April.
    13. Braglia, Marcello & Carmignani, Gionata & Frosolini, Marco & Zammori, Francesco, 2012. "Data classification and MTBF prediction with a multivariate analysis approach," Reliability Engineering and System Safety, Elsevier, vol. 97(1), pages 27-35.
    14. A Brint & J Bridgeman & M Black, 2009. "The rise, current position and future direction of asset management in utility industries," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 106-113, May.
    15. Shey-Huei Sheu & Hsin-Nan Tsai & Tsung-Shin Hsu & Fu-Kwun Wang, 2015. "Optimal number of minimal repairs before replacement of a deteriorating system with inspections," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(8), pages 1367-1379, June.
    16. Hajipour, Yassin & Taghipour, Sharareh, 2016. "Non-periodic inspection optimization of multi-component and k-out-of-m systems," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 228-243.
    17. Wenbin Wang & Wenjuan Zhang, 2005. "A model to predict the residual life of aircraft engines based upon oil analysis data," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(3), pages 276-284, April.
    18. Azimpoor, Samareh & Taghipour, Sharareh, 2021. "Joint inspection and product quality optimization for a system with delayed failure," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    19. Panagiotidou, S. & Tagaras, G., 2012. "Optimal integrated process control and maintenance under general deterioration," Reliability Engineering and System Safety, Elsevier, vol. 104(C), pages 58-70.
    20. Alberti, Alexandre R. & Cavalcante, Cristiano A.V. & Scarf, Philip & Silva, André L.O., 2018. "Modelling inspection and replacement quality for a protection system," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 145-153.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:62:y:2011:i:1:d:10.1057_jors.2009.165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.