IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v60y2009i1d10.1057_palgrave.jors.2602531.html
   My bibliography  Save this article

Comparing conventional and distributed approaches to simulation in a complex supply-chain health system

Author

Listed:
  • K Katsaliaki

    (Middlesex University)

  • N Mustafee

    (Brunel University)

  • S J E Taylor

    (Brunel University)

  • S Brailsford

    (University of Southampton)

Abstract

Decision making in modern supply chains can be extremely daunting due to their complex nature. Discrete-event simulation is a technique that can support decision making by providing what-if analysis and evaluation of quantitative data. However, modelling supply chain systems can result in massively large and complicated models that can take a very long time to run even with today's powerful desktop computers. Distributed simulation has been suggested as a possible solution to this problem, by enabling the use of multiple computers to run models. To investigate this claim, this paper presents experiences in implementing a simulation model with a ‘conventional’ approach and with a distributed approach. This study takes place in a healthcare setting, the supply chain of blood from donor to recipient. The study compares conventional and distributed model execution times of a supply chain model simulated in the simulation package Simul8. The results show that the execution time of the conventional approach increases almost linearly with the size of the system and also the simulation run period. However, the distributed approach to this problem follows a more linear distribution of the execution time in terms of system size and run time and appears to offer a practical alternative. On the basis of this, the paper concludes that distributed simulation can be successfully applied in certain situations.

Suggested Citation

  • K Katsaliaki & N Mustafee & S J E Taylor & S Brailsford, 2009. "Comparing conventional and distributed approaches to simulation in a complex supply-chain health system," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 43-51, January.
  • Handle: RePEc:pal:jorsoc:v:60:y:2009:i:1:d:10.1057_palgrave.jors.2602531
    DOI: 10.1057/palgrave.jors.2602531
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2602531
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2602531?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S Robinson, 2005. "Discrete-event simulation: from the pioneers to the present, what next?," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(6), pages 619-629, June.
    2. K Katsaliaki & S C Brailsford, 2007. "Using simulation to improve the blood supply chain," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(2), pages 219-227, February.
    3. Goyal, S. K. & Giri, B. C., 2001. "Recent trends in modeling of deteriorating inventory," European Journal of Operational Research, Elsevier, vol. 134(1), pages 1-16, October.
    4. van Donselaar, K. & van Woensel, T. & Broekmeulen, R. & Fransoo, J., 2006. "Inventory control of perishables in supermarkets," International Journal of Production Economics, Elsevier, vol. 104(2), pages 462-472, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taylor, Simon J.E., 2019. "Distributed simulation: state-of-the-art and potential for operational research," European Journal of Operational Research, Elsevier, vol. 273(1), pages 1-19.
    2. Joana Cunha & Vasco Reis & Paulo Teixeira, 2022. "Development of an agent-based model for railway infrastructure project appraisal," Transportation, Springer, vol. 49(6), pages 1649-1681, December.
    3. Jesús Isaac Vázquez-Serrano & Rodrigo E. Peimbert-García & Leopoldo Eduardo Cárdenas-Barrón, 2021. "Discrete-Event Simulation Modeling in Healthcare: A Comprehensive Review," IJERPH, MDPI, vol. 18(22), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robinson, Stewart & Radnor, Zoe J. & Burgess, Nicola & Worthington, Claire, 2012. "SimLean: Utilising simulation in the implementation of lean in healthcare," European Journal of Operational Research, Elsevier, vol. 219(1), pages 188-197.
    2. Kouki, Chaaben & Sahin, Evren & Jemaï, Zied & Dallery, Yves, 2013. "Assessing the impact of perishability and the use of time temperature technologies on inventory management," International Journal of Production Economics, Elsevier, vol. 143(1), pages 72-85.
    3. Mervegül Kirci & Olov Isaksson & Ralf Seifert, 2022. "Managing Perishability in the Fruit and Vegetable Supply Chains," Sustainability, MDPI, vol. 14(9), pages 1-24, April.
    4. Noordhoek, Marije & Dullaert, Wout & Lai, David S.W. & de Leeuw, Sander, 2018. "A simulation–optimization approach for a service-constrained multi-echelon distribution network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 292-311.
    5. Ting, S.L. & Tse, Y.K. & Ho, G.T.S. & Chung, S.H. & Pang, G., 2014. "Mining logistics data to assure the quality in a sustainable food supply chain: A case in the red wine industry," International Journal of Production Economics, Elsevier, vol. 152(C), pages 200-209.
    6. V. Radhamani & B. Sivakumar & G. Arivarignan, 2022. "A Comparative Study on Replenishment Policies for Perishable Inventory System with Service Facility and Multiple Server Vacation," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 229-265, March.
    7. Dong Li & Xiaojun Wang, 2017. "Dynamic supply chain decisions based on networked sensor data: an application in the chilled food retail chain," International Journal of Production Research, Taylor & Francis Journals, vol. 55(17), pages 5127-5141, September.
    8. Chenavaz, Régis & Paraschiv, Corina, 2018. "Dynamic pricing for inventories with reference price effects," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-16.
    9. Ketzenberg, M.E. & Bloemhof-Ruwaard, J.M., 2009. "The Value of RFID Technology Enabled Information to Manage Perishables," ERIM Report Series Research in Management ERS-2009-020-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    10. Frans Prenkert, 2012. "Business Network Simulation: Combining Research Cases and Agent-Based Models in a Robust Methodology," International Journal of Business Administration, International Journal of Business Administration, Sciedu Press, vol. 3(6), pages 82-92, November.
    11. Zelin Wang & Xiaoning Wei & Jiansheng Pan, 2021. "Research on IRP of Perishable Products Based on Mobile Data Sharing Environment," International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), IGI Global, vol. 15(2), pages 139-157, April.
    12. Alamri, Adel A. & Syntetos, Aris A., 2018. "Beyond LIFO and FIFO: Exploring an Allocation-In-Fraction-Out (AIFO) policy in a two-warehouse inventory model," International Journal of Production Economics, Elsevier, vol. 206(C), pages 33-45.
    13. Kouki, Chaaben & Babai, M. Zied & Jemai, Zied & Minner, Stefan, 2016. "A coordinated multi-item inventory system for perishables with random lifetime," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 226-237.
    14. Richter, K. & Pakhomova, N.V. & Dobos, I., 2006. "A Wagner/Whitin natural resource stock control model," International Journal of Production Economics, Elsevier, vol. 104(2), pages 419-426, December.
    15. Ortiz-Barrios, Miguel & Arias-Fonseca, Sebastián & Ishizaka, Alessio & Barbati, Maria & Avendaño-Collante, Betty & Navarro-Jiménez, Eduardo, 2023. "Artificial intelligence and discrete-event simulation for capacity management of intensive care units during the Covid-19 pandemic: A case study," Journal of Business Research, Elsevier, vol. 160(C).
    16. Lodree Jr., Emmett J. & Uzochukwu, Benedict M., 2008. "Production planning for a deteriorating item with stochastic demand and consumer choice," International Journal of Production Economics, Elsevier, vol. 116(2), pages 219-232, December.
    17. Zelin Wang & Xiaoning Wei & Jiansheng Pan, 2021. "Research on IRP of Perishable Products Based on Mobile Data Sharing Environment," International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), IGI Global, vol. 15(2), pages 5-23, April.
    18. Gunpinar, Serkan & Centeno, Grisselle, 2016. "An integer programming approach to the bloodmobile routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 94-115.
    19. Wu, Jiang & Chang, Chun-Tao & Teng, Jinn-Tsair & Lai, Kuei-Kuei, 2017. "Optimal order quantity and selling price over a product life cycle with deterioration rate linked to expiration date," International Journal of Production Economics, Elsevier, vol. 193(C), pages 343-351.
    20. Ping Zhang & Hong Yan & King Wah Pang, 2019. "Inventory Sharing Strategy for Disposable Medical Items between Two Hospitals," Sustainability, MDPI, vol. 11(22), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:60:y:2009:i:1:d:10.1057_palgrave.jors.2602531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.