IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v58y2007i11d10.1057_palgrave.jors.2602258.html
   My bibliography  Save this article

A tabu-based large neighbourhood search methodology for the capacitated examination timetabling problem

Author

Listed:
  • S Abdullah

    (University of Nottingham)

  • S Ahmadi

    (De Montfort University)

  • E K Burke

    (University of Nottingham)

  • M Dror

    (University of Arizona)

  • B McCollum

    (Queen's University Belfast)

Abstract

Neighbourhood search algorithms are often the most effective known approaches for solving partitioning problems. In this paper, we consider the capacitated examination timetabling problem as a partitioning problem and present an examination timetabling methodology that is based upon the large neighbourhood search algorithm that was originally developed by Ahuja and Orlin. It is based on searching a very large neighbourhood of solutions using graph theoretical algorithms implemented on a so-called improvement graph. In this paper, we present a tabu-based large neighbourhood search, in which the improvement moves are kept in a tabu list for a certain number of iterations. We have drawn upon Ahuja–Orlin's methodology incorporated with tabu lists and have developed an effective examination timetabling solution scheme which we evaluated on capacitated problem benchmark data sets from the literature. The capacitated problem includes the consideration of room capacities and, as such, represents an issue that is of particular importance in real-world situations. We compare our approach against other methodologies that have appeared in the literature over recent years. Our computational experiments indicate that the approach we describe produces the best known results on a number of these benchmark problems.

Suggested Citation

  • S Abdullah & S Ahmadi & E K Burke & M Dror & B McCollum, 2007. "A tabu-based large neighbourhood search methodology for the capacitated examination timetabling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(11), pages 1494-1502, November.
  • Handle: RePEc:pal:jorsoc:v:58:y:2007:i:11:d:10.1057_palgrave.jors.2602258
    DOI: 10.1057/palgrave.jors.2602258
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2602258
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2602258?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Werra, D., 1985. "An introduction to timetabling," European Journal of Operational Research, Elsevier, vol. 19(2), pages 151-162, February.
    2. Burke, Edmund Kieran & Petrovic, Sanja, 2002. "Recent research directions in automated timetabling," European Journal of Operational Research, Elsevier, vol. 140(2), pages 266-280, July.
    3. Paul M. Thompson & Harilaos N. Psaraftis, 1993. "Cyclic Transfer Algorithm for Multivehicle Routing and Scheduling Problems," Operations Research, INFORMS, vol. 41(5), pages 935-946, October.
    4. White, George M. & Xie, Bill S. & Zonjic, Stevan, 2004. "Using tabu search with longer-term memory and relaxation to create examination timetables," European Journal of Operational Research, Elsevier, vol. 153(1), pages 80-91, February.
    5. Michael W. Carter, 1986. "OR Practice—A Survey of Practical Applications of Examination Timetabling Algorithms," Operations Research, INFORMS, vol. 34(2), pages 193-202, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Johnes, Jill, 2015. "Operational Research in education," European Journal of Operational Research, Elsevier, vol. 243(3), pages 683-696.
    2. Sébastien Mouthuy & Florence Massen & Yves Deville & Pascal Van Hentenryck, 2015. "A Multistage Very Large-Scale Neighborhood Search for the Vehicle Routing Problem with Soft Time Windows," Transportation Science, INFORMS, vol. 49(2), pages 223-238, May.
    3. Burke, E.K. & Eckersley, A.J. & McCollum, B. & Petrovic, S. & Qu, R., 2010. "Hybrid variable neighbourhood approaches to university exam timetabling," European Journal of Operational Research, Elsevier, vol. 206(1), pages 46-53, October.
    4. Alejandro Cataldo & Juan-Carlos Ferrer & Jaime Miranda & Pablo A. Rey & Antoine Sauré, 2017. "An integer programming approach to curriculum-based examination timetabling," Annals of Operations Research, Springer, vol. 258(2), pages 369-393, November.
    5. Li, Jingpeng & Bai, Ruibin & Shen, Yindong & Qu, Rong, 2015. "Search with evolutionary ruin and stochastic rebuild: A theoretic framework and a case study on exam timetabling," European Journal of Operational Research, Elsevier, vol. 242(3), pages 798-806.
    6. R Qu & E K Burke, 2009. "Hybridizations within a graph-based hyper-heuristic framework for university timetabling problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(9), pages 1273-1285, September.
    7. Sana Bouajaja & Najoua Dridi, 2017. "A survey on human resource allocation problem and its applications," Operational Research, Springer, vol. 17(2), pages 339-369, July.
    8. Zhang, Defu & Liu, Yongkai & M'Hallah, Rym & Leung, Stephen C.H., 2010. "A simulated annealing with a new neighborhood structure based algorithm for high school timetabling problems," European Journal of Operational Research, Elsevier, vol. 203(3), pages 550-558, June.
    9. Turabieh, Hamza & Abdullah, Salwani, 2011. "An integrated hybrid approach to the examination timetabling problem," Omega, Elsevier, vol. 39(6), pages 598-607, December.
    10. Edmund Burke & Graham Kendall & Mustafa Mısır & Ender Özcan, 2012. "Monte Carlo hyper-heuristics for examination timetabling," Annals of Operations Research, Springer, vol. 196(1), pages 73-90, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johnes, Jill, 2015. "Operational Research in education," European Journal of Operational Research, Elsevier, vol. 243(3), pages 683-696.
    2. Turabieh, Hamza & Abdullah, Salwani, 2011. "An integrated hybrid approach to the examination timetabling problem," Omega, Elsevier, vol. 39(6), pages 598-607, December.
    3. R Qu & E K Burke, 2009. "Hybridizations within a graph-based hyper-heuristic framework for university timetabling problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(9), pages 1273-1285, September.
    4. Burke, E.K. & Eckersley, A.J. & McCollum, B. & Petrovic, S. & Qu, R., 2010. "Hybrid variable neighbourhood approaches to university exam timetabling," European Journal of Operational Research, Elsevier, vol. 206(1), pages 46-53, October.
    5. Nossack, Jenny, 2022. "Therapy scheduling and therapy planning at hospitals," Omega, Elsevier, vol. 109(C).
    6. De Boeck, Liesje & Beliën, Jeroen & Creemers, Stefan, 2016. "A column generation approach for solving the examination-timetabling problemAuthor-Name: Woumans, Gert," European Journal of Operational Research, Elsevier, vol. 253(1), pages 178-194.
    7. T. Godwin, 2022. "Obtaining quality business school examination timetable under heterogeneous elective selections through surrogacy," OPSEARCH, Springer;Operational Research Society of India, vol. 59(3), pages 1055-1093, September.
    8. Yuelin Shen, 2008. "Reactive Tabu Search in a Team-Learning Problem," INFORMS Journal on Computing, INFORMS, vol. 20(4), pages 500-509, November.
    9. Edmund K. Burke & Yuri Bykov, 2016. "An Adaptive Flex-Deluge Approach to University Exam Timetabling," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 781-794, November.
    10. Gerhard Post & Samad Ahmadi & Sophia Daskalaki & Jeffrey Kingston & Jari Kyngas & Cimmo Nurmi & David Ranson, 2012. "An XML format for benchmarks in High School Timetabling," Annals of Operations Research, Springer, vol. 194(1), pages 385-397, April.
    11. De Causmaecker, Patrick & Demeester, Peter & Vanden Berghe, Greet, 2009. "A decomposed metaheuristic approach for a real-world university timetabling problem," European Journal of Operational Research, Elsevier, vol. 195(1), pages 307-318, May.
    12. Christine Mumford, 2010. "A multiobjective framework for heavily constrained examination timetabling problems," Annals of Operations Research, Springer, vol. 180(1), pages 3-31, November.
    13. C Beyrouthy & E K Burke & D Landa-Silva & B McCollum & P McMullan & A J Parkes, 2009. "Towards improving the utilization of university teaching space," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 130-143, January.
    14. Oliver Czibula & Hanyu Gu & Aaron Russell & Yakov Zinder, 2017. "A multi-stage IP-based heuristic for class timetabling and trainer rostering," Annals of Operations Research, Springer, vol. 252(2), pages 305-333, May.
    15. Kahar, M.N.M. & Kendall, G., 2010. "The examination timetabling problem at Universiti Malaysia Pahang: Comparison of a constructive heuristic with an existing software solution," European Journal of Operational Research, Elsevier, vol. 207(2), pages 557-565, December.
    16. Abdul Rahman, Syariza & Bargiela, Andrzej & Burke, Edmund K. & Özcan, Ender & McCollum, Barry & McMullan, Paul, 2014. "Adaptive linear combination of heuristic orderings in constructing examination timetables," European Journal of Operational Research, Elsevier, vol. 232(2), pages 287-297.
    17. G N Beligiannis & C Moschopoulos & S D Likothanassis, 2009. "A genetic algorithm approach to school timetabling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 23-42, January.
    18. Urban, Timothy L. & Russell, Robert A., 2003. "Scheduling sports competitions on multiple venues," European Journal of Operational Research, Elsevier, vol. 148(2), pages 302-311, July.
    19. Fabian Dunke & Stefan Nickel, 2023. "A matheuristic for customized multi-level multi-criteria university timetabling," Annals of Operations Research, Springer, vol. 328(2), pages 1313-1348, September.
    20. P Lara-Velázquez & R López-Bracho & J Ramírez-Rodríguez & J Yáñez, 2011. "A model for timetabling problems with period spread constraints," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 217-222, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:58:y:2007:i:11:d:10.1057_palgrave.jors.2602258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.