IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v56y2005i4d10.1057_palgrave.jors.2601826.html
   My bibliography  Save this article

An analytical approach to the facility location and capacity acquisition problem under demand uncertainty

Author

Listed:
  • A Dasci

    (University of Alberta
    École des Hautes Études Commerciales)

  • G Laporte

    (École des Hautes Études Commerciales)

Abstract

This article presents an analysis of facility location and capacity acquisition under demand uncertainty. A novel methodology is proposed, in which the focus is shifted from the precise representation of facility locations to the market areas they serve. This is an extension of the optimal market area approach in which market area size and facility capacity are determined to minimize the total cost associated with fixed facility opening, variable capacity acquisition, transportation, and shortage. The problem has two variants depending on whether the firm satisfies shortages by outsourcing or shortages become lost sales. The analytical approach simplifies the problem considerably and leads to intuitive and insightful models. Among several other results, it is shown that fewer facilities are set up under lost sales than under outsourcing. It is also shown that the total cost in both models is relatively insensitive to small deviations in optimal capacity choices and parameter estimations.

Suggested Citation

  • A Dasci & G Laporte, 2005. "An analytical approach to the facility location and capacity acquisition problem under demand uncertainty," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(4), pages 397-405, April.
  • Handle: RePEc:pal:jorsoc:v:56:y:2005:i:4:d:10.1057_palgrave.jors.2601826
    DOI: 10.1057/palgrave.jors.2601826
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2601826
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2601826?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Klincewicz, John G. & Luss, Hanan & Yu, Chang-Sung, 1988. "A large-scale multilocation capacity planning model," European Journal of Operational Research, Elsevier, vol. 34(2), pages 178-190, March.
    2. C. O. Fong & V. Srinivasan, 1981. "The Multiregion Dynamic Capacity Expansion Problem, Part I," Operations Research, INFORMS, vol. 29(4), pages 787-799, August.
    3. Hall, Randolph W., 1986. "Discrete models/continuous models," Omega, Elsevier, vol. 14(3), pages 213-220.
    4. Rosenfield, Donald B. & Engelstein, Israel & Feigenbaum, David, 1992. "An application of sizing service territories," European Journal of Operational Research, Elsevier, vol. 63(2), pages 164-172, December.
    5. Arthur M. Geoffrion, 1976. "The Purpose of Mathematical Programming is Insight, Not Numbers," Interfaces, INFORMS, vol. 7(1), pages 81-92, November.
    6. Donald Erlenkotter, 1975. "Capacity Planning for Large Multilocation Systems: Approximate and Incomplete Dynamic Programming Approaches," Management Science, INFORMS, vol. 22(3), pages 274-285, November.
    7. James F. Campbell, 1993. "One-to-Many Distribution with Transshipments: An Analytic Model," Transportation Science, INFORMS, vol. 27(4), pages 330-340, November.
    8. C. O. Fong & V. Srinivasan, 1981. "The Multiregion Dynamic Capacity Expansion Problem, Part II," Operations Research, INFORMS, vol. 29(4), pages 800-816, August.
    9. Paul Krugman, 1998. "Space: The Final Frontier," Journal of Economic Perspectives, American Economic Association, vol. 12(2), pages 161-174, Spring.
    10. Gilbert Laporte & François V. Louveaux & Luc van Hamme, 1994. "Exact Solution to a Location Problem with Stochastic Demands," Transportation Science, INFORMS, vol. 28(2), pages 95-103, May.
    11. Ram C. Rao & David P. Rutenberg, 1977. "Multilocation Plant Sizing and Timing," Management Science, INFORMS, vol. 23(11), pages 1187-1198, July.
    12. C. O. Fong & V. Srinivasan, 1986. "The Multiregion Dynamic Capacity Expansion Problem: An Improved Heuristic," Management Science, INFORMS, vol. 32(9), pages 1140-1152, September.
    13. Dasci, Abdullah & Verter, Vedat, 2001. "A continuous model for production-distribution system design," European Journal of Operational Research, Elsevier, vol. 129(2), pages 287-298, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ansari, Sina & Başdere, Mehmet & Li, Xiaopeng & Ouyang, Yanfeng & Smilowitz, Karen, 2018. "Advancements in continuous approximation models for logistics and transportation systems: 1996–2016," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 229-252.
    2. Péter Egri & Balázs Dávid & Tamás Kis & Miklós Krész, 2023. "Robust facility location in reverse logistics," Annals of Operations Research, Springer, vol. 324(1), pages 163-188, May.
    3. Bricha, Naji & Nourelfath, Mustapha, 2015. "Protection of warehouses and plants under capacity constraint," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 93-104.
    4. Bricha, Naji & Nourelfath, Mustapha, 2014. "Extra-capacity versus protection for supply networks under attack," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 185-196.
    5. Jakubovskis, Aldis, 2017. "Flexible production resources and capacity utilization rates: A robust optimization perspective," International Journal of Production Economics, Elsevier, vol. 189(C), pages 77-85.
    6. Turken, Nazli & Carrillo, Janice & Verter, Vedat, 2020. "Strategic supply chain decisions under environmental regulations: When to invest in end-of-pipe and green technology," European Journal of Operational Research, Elsevier, vol. 283(2), pages 601-613.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Langevin, André & Mbaraga, Pontien & Campbell, James F., 1996. "Continuous approximation models in freight distribution: An overview," Transportation Research Part B: Methodological, Elsevier, vol. 30(3), pages 163-188, June.
    2. E Aghezzaf, 2005. "Capacity planning and warehouse location in supply chains with uncertain demands," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(4), pages 453-462, April.
    3. Anna Franceschetti & Ola Jabali & Gilbert Laporte, 2017. "Continuous approximation models in freight distribution management," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 413-433, October.
    4. Shabbir Ahmed & Nikolaos V. Sahinidis, 2003. "An Approximation Scheme for Stochastic Integer Programs Arising in Capacity Expansion," Operations Research, INFORMS, vol. 51(3), pages 461-471, June.
    5. Tingting Cui & Yanfeng Ouyang & Zuo-Jun Max Shen, 2010. "Reliable Facility Location Design Under the Risk of Disruptions," Operations Research, INFORMS, vol. 58(4-part-1), pages 998-1011, August.
    6. Tsao, Yu-Chung & Lu, Jye-Chyi, 2012. "A supply chain network design considering transportation cost discounts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 401-414.
    7. Li, Xiaopeng & Ouyang, Yanfeng, 2010. "A continuum approximation approach to reliable facility location design under correlated probabilistic disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 535-548, May.
    8. Kai Huang & Shabbir Ahmed, 2009. "The Value of Multistage Stochastic Programming in Capacity Planning Under Uncertainty," Operations Research, INFORMS, vol. 57(4), pages 893-904, August.
    9. Kimms, Alf, 1996. "Stability measures for rolling schedules with applications to capacity expansion planning, master production scheduling, and lot sizing," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 418, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    10. Ansari, Sina & Başdere, Mehmet & Li, Xiaopeng & Ouyang, Yanfeng & Smilowitz, Karen, 2018. "Advancements in continuous approximation models for logistics and transportation systems: 1996–2016," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 229-252.
    11. Yu-Chung Tsao & Qinhong Zhang & Tsung-Hui Chen, 2016. "Multi-item distribution network design problems under volume discount on transportation cost," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 426-443, January.
    12. Abdullah Dasci & Vedat Verter, 2005. "Evaluation of Plant Focus Strategies: A Continuous Approximation Framework," Annals of Operations Research, Springer, vol. 136(1), pages 303-327, April.
    13. Chowdhury, Sudipta & Emelogu, Adindu & Marufuzzaman, Mohammad & Nurre, Sarah G. & Bian, Linkan, 2017. "Drones for disaster response and relief operations: A continuous approximation model," International Journal of Production Economics, Elsevier, vol. 188(C), pages 167-184.
    14. Pujari, Nikhil A. & Hale, Trevor S. & Huq, Faizul, 2008. "A continuous approximation procedure for determining inventory distribution schemas within supply chains," European Journal of Operational Research, Elsevier, vol. 186(1), pages 405-422, April.
    15. Kimms, A, 1998. "Stability Measures for Rolling Schedules with Applications to Capacity Expansion Planning, Master Production Scheduling, and Lot Sizing," Omega, Elsevier, vol. 26(3), pages 355-366, June.
    16. Santos, Miguel Gueifão & Antunes, António Pais, 2015. "Long-term evolution of airport networks: Optimization model and its application to the United States," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 17-46.
    17. Ahmed, Shabbir & Sahinidis, Nikolaos V., 2008. "Selection, acquisition, and allocation of manufacturing technology in a multi-period environment," European Journal of Operational Research, Elsevier, vol. 189(3), pages 807-821, September.
    18. Tsao, Yu-Chung & Mangotra, Divya & Lu, Jye-Chyi & Dong, Ming, 2012. "A continuous approximation approach for the integrated facility-inventory allocation problem," European Journal of Operational Research, Elsevier, vol. 222(2), pages 216-228.
    19. Cui, Tingting & Ouyang, Yanfeng & Shen, Zuo-Jun Max J, 2010. "Reliable Facility Location Design under the Risk of Disruptions," University of California Transportation Center, Working Papers qt5sh2c7pw, University of California Transportation Center.
    20. Dasci, Abdullah & Verter, Vedat, 2001. "A continuous model for production-distribution system design," European Journal of Operational Research, Elsevier, vol. 129(2), pages 287-298, March.

    More about this item

    Keywords

    location; distribution;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:56:y:2005:i:4:d:10.1057_palgrave.jors.2601826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.