IDEAS home Printed from https://ideas.repec.org/a/pal/jorapm/v23y2024i1d10.1057_s41272-023-00447-5.html
   My bibliography  Save this article

Transient price setting in the era of automated systems: the ‘hands-on’ hotel general manager lives on!

Author

Listed:
  • Natalie Haynes

    (Sheffield Hallam University)

  • David Egan

    (Sheffield Hallam University)

Abstract

Hotel pricing discussions seem to be increasingly dominated by automated revenue management and pricing systems without considering human interaction. Using grounded theory, this paper foregrounds the voice of twenty managers and exposes the complexities and realities of their involvement in price decision-making. A hybrid price decision-making process was discovered where the hotel general manager remains in control despite automation, due to their modus operandi to control the performance of their hotel by using their local market and customer knowledge in the pricing process. This indicates that for revenue management at hotel unit level there is an often-unseen gap between theory and practice.

Suggested Citation

  • Natalie Haynes & David Egan, 2024. "Transient price setting in the era of automated systems: the ‘hands-on’ hotel general manager lives on!," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 23(1), pages 28-38, February.
  • Handle: RePEc:pal:jorapm:v:23:y:2024:i:1:d:10.1057_s41272-023-00447-5
    DOI: 10.1057/s41272-023-00447-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41272-023-00447-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1057/s41272-023-00447-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sivarajah, Uthayasankar & Kamal, Muhammad Mustafa & Irani, Zahir & Weerakkody, Vishanth, 2017. "Critical analysis of Big Data challenges and analytical methods," Journal of Business Research, Elsevier, vol. 70(C), pages 263-286.
    2. Gandomi, Amir & Haider, Murtaza, 2015. "Beyond the hype: Big data concepts, methods, and analytics," International Journal of Information Management, Elsevier, vol. 35(2), pages 137-144.
    3. Angeliki N. Menegaki, 2022. "New Technologies in Hotels and Museums: Supply-side Perceptions with Education Implications for Managers and Curators," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 13(4), pages 2935-2956, December.
    4. Wedad Elmaghraby & P{i}nar Keskinocak, 2003. "Dynamic Pricing in the Presence of Inventory Considerations: Research Overview, Current Practices, and Future Directions," Management Science, INFORMS, vol. 49(10), pages 1287-1309, October.
    5. Stan H G Josephi & Marc B Stierand & Aad van Mourik, 2016. "Hotel revenue management: Then, now and tomorrow," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 15(3), pages 252-257, July.
    6. Ian Yeoman, 2021. "Q. Can we manage demand in COVID-19 world? A. I don’t know," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 20(1), pages 1-2, February.
    7. Michael Murimi & Billy Wadongo & Tom Olielo, 2021. "Determinants of revenue management practices and their impacts on the financial performance of hotels in Kenya: a proposed theoretical framework," Future Business Journal, Springer, vol. 7(1), pages 1-7, December.
    8. Xi Chen & David Simchi-Levi & Yining Wang, 2022. "Privacy-Preserving Dynamic Personalized Pricing with Demand Learning," Management Science, INFORMS, vol. 68(7), pages 4878-4898, July.
    9. Ziad Alrawadieh & Zaid Alrawadieh & Gurel Cetin, 2021. "Digital transformation and revenue management: Evidence from the hotel industry," Tourism Economics, , vol. 27(2), pages 328-345, March.
    10. Klein, Robert & Koch, Sebastian & Steinhardt, Claudius & Strauss, Arne K., 2020. "A review of revenue management: Recent generalizations and advances in industry applications," European Journal of Operational Research, Elsevier, vol. 284(2), pages 397-412.
    11. Lokman I. Meho, 2006. "E‐mail interviewing in qualitative research: A methodological discussion," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(10), pages 1284-1295, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harkaran Kava & Konstantina Spanaki & Thanos Papadopoulos & Stella Despoudi & Oscar Rodriguez-Espindola & Masoud Fakhimi, 2021. "Data Analytics Diffusion in the UK Renewable Energy Sector: An Innovation Perspective," Post-Print hal-03781046, HAL.
    2. Johannes Habel & Sascha Alavi & Nicolas Heinitz, 2023. "A theory of predictive sales analytics adoption," AMS Review, Springer;Academy of Marketing Science, vol. 13(1), pages 34-54, June.
    3. Ahmad Ibrahim Aljumah & Mohammed T. Nuseir & Md. Mahmudul Alam, 2021. "Traditional marketing analytics, big data analytics and big data system quality and the success of new product development," Post-Print hal-03538161, HAL.
    4. Mohamed Gaber & Edward J. Lusk, 2019. "A Vetting Protocol for the Analytical Procedures Platform for the AP-Phase of PCAOB Audits," Accounting and Finance Research, Sciedu Press, vol. 8(4), pages 1-43, November.
    5. Osama Musa Ali Al-Darras & Cem Tanova, 2022. "From Big Data Analytics to Organizational Agility: What Is the Mechanism?," SAGE Open, , vol. 12(2), pages 21582440221, June.
    6. Ashrafi, Amir & Zare Ravasan, Ahad & Trkman, Peter & Afshari, Samira, 2019. "The role of business analytics capabilities in bolstering firms’ agility and performance," International Journal of Information Management, Elsevier, vol. 47(C), pages 1-15.
    7. Maryia Zaitsava & Elona Marku & Maria Chiara Guardo & Azar Shahgholian, 2023. "A fine-grained perspective on big data knowledge creation: dimensions, insights, and mechanism from a pilot study," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 27(2), pages 547-573, June.
    8. Gupta, Shivam & Kar, Arpan Kumar & Baabdullah, Abdullah & Al-Khowaiter, Wassan A.A., 2018. "Big data with cognitive computing: A review for the future," International Journal of Information Management, Elsevier, vol. 42(C), pages 78-89.
    9. Sebastiano Cupertino & Gianluca Vitale & Angelo Riccaboni, 2018. "L?impatto dei Big Data sulle attivit? di pianificazione & controllo aziendali: In caso di studio di una PMI agricola Italiana," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2018(3), pages 59-86.
    10. H. Kava & K. Spanaki & T. Papadopoulos & S. Despoudi & O. Rodriguez Espindola & M. Fakhimi, 2024. "Data analytics diffusion in the UK renewable energy sector: an innovation perspective," Post-Print hal-04478933, HAL.
    11. Wei-wei Zhang & Jyoti Bhola & Rajeev Kumar & Nitin Saluja, 2022. "Study and analysis of big data for characterization of user association in large scale," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 375-384, March.
    12. Muzaffer Buyruk & Ertan Güner, 2022. "Personalization in airline revenue management: an overview and future outlook," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 21(2), pages 129-139, April.
    13. Claudio Vitari & E. Raguseo, 2021. "Big data technologies: perceived benefits and costs for adopter and non-adopter enterprises [Technologies pour les données massives : Bénéfices et coûts perçus par les entreprises adoptantes et non," Post-Print hal-03323888, HAL.
    14. Tabesh, Pooya & Mousavidin, Elham & Hasani, Sona, 2019. "Implementing big data strategies: A managerial perspective," Business Horizons, Elsevier, vol. 62(3), pages 347-358.
    15. Vincent Mak & Amnon Rapoport & Eyran J. Gisches & Jiaojie Han, 2014. "Purchasing Scarce Products Under Dynamic Pricing: An Experimental Investigation," Manufacturing & Service Operations Management, INFORMS, vol. 16(3), pages 425-438, July.
    16. Régis Chenavaz & Corina Paraschiv & Gabriel Turinici, 2017. "Dynamic Pricing of New Products in Competitive Markets: A Mean-Field Game Approach," Working Papers hal-01592958, HAL.
    17. Dasci, A. & Karakul, M., 2009. "Two-period dynamic versus fixed-ratio pricing in a capacity constrained duopoly," European Journal of Operational Research, Elsevier, vol. 197(3), pages 945-968, September.
    18. Grigoriev, A. & Hiller, B. & Marban, S. & Vredeveld, T. & van der Zwaan, G.R.J., 2010. "Dynamic pricing problems with elastic demand," Research Memorandum 053, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    19. de Camargo Fiorini, Paula & Roman Pais Seles, Bruno Michel & Chiappetta Jabbour, Charbel Jose & Barberio Mariano, Enzo & de Sousa Jabbour, Ana Beatriz Lopes, 2018. "Management theory and big data literature: From a review to a research agenda," International Journal of Information Management, Elsevier, vol. 43(C), pages 112-129.
    20. Shivaram Subramanian & Hanif Sherali, 2010. "A fractional programming approach for retail category price optimization," Journal of Global Optimization, Springer, vol. 48(2), pages 263-277, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorapm:v:23:y:2024:i:1:d:10.1057_s41272-023-00447-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.