IDEAS home Printed from https://ideas.repec.org/a/pal/jmarka/v12y2024i3d10.1057_s41270-024-00312-3.html
   My bibliography  Save this article

Bayesian analysis of experimental and observational data: a review and illustration of the BANOVA R package

Author

Listed:
  • Michel Wedel

    (University of Maryland)

  • Chen Dong

    (Snapchat)

  • Anna Kopyakova

    (Objective Platform)

Abstract

This article provides a review of the BANOVA R package and an illustration of its uses in Marketing Analytics. The package allows users to conduct regression analyses and analysis of variance for between-subjects, within-subjects, and mixed designs, where the dependent variable follows one of a variety of continuous or discrete distribution functions and the data may have a hierarchical structure. The package uses stan as the underlying computing engine, and enables the calculation of simple effects, floodlight analysis, and mediation analysis. The R package is illustrated through a reanalysis of the observational data by Blake et al. (Psychol Sci 32:315–325, 2021) on the relationship between misogynistic tweets and domestic violence, and of the experimental data by Srna et al. (Psychol Sci 29:1942–1955, 2018) on the perception of multitasking.

Suggested Citation

  • Michel Wedel & Chen Dong & Anna Kopyakova, 2024. "Bayesian analysis of experimental and observational data: a review and illustration of the BANOVA R package," Journal of Marketing Analytics, Palgrave Macmillan, vol. 12(3), pages 735-742, September.
  • Handle: RePEc:pal:jmarka:v:12:y:2024:i:3:d:10.1057_s41270-024-00312-3
    DOI: 10.1057/s41270-024-00312-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41270-024-00312-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1057/s41270-024-00312-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    2. Peter E. Rossi & Greg M. Allenby, 2003. "Bayesian Statistics and Marketing," Marketing Science, INFORMS, vol. 22(3), pages 304-328, July.
    3. Feihong Xia, 2023. "Why to use Poisson regression for count data analysis in consumer behavior research," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(3), pages 379-384, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gael M. Martin & David T. Frazier & Christian P. Robert, 2021. "Approximating Bayes in the 21st Century," Monash Econometrics and Business Statistics Working Papers 24/21, Monash University, Department of Econometrics and Business Statistics.
    2. Bruno Jacobs & Dennis Fok & Bas Donkers, 2021. "Understanding Large-Scale Dynamic Purchase Behavior," Marketing Science, INFORMS, vol. 40(5), pages 844-870, September.
    3. repec:hum:wpaper:sfb649dp2007-059 is not listed on IDEAS
    4. Francis,David C. & Kubinec ,Robert, 2022. "Beyond Political Connections : A Measurement Model Approach to Estimating Firm-levelPolitical Influence in 41 Economies," Policy Research Working Paper Series 10119, The World Bank.
    5. Martinovici, A., 2019. "Revealing attention - how eye movements predict brand choice and moment of choice," Other publications TiSEM 7dca38a5-9f78-4aee-bd81-c, Tilburg University, School of Economics and Management.
    6. Yongping Bao & Ludwig Danwitz & Fabian Dvorak & Sebastian Fehrler & Lars Hornuf & Hsuan Yu Lin & Bettina von Helversen, 2022. "Similarity and Consistency in Algorithm-Guided Exploration," CESifo Working Paper Series 10188, CESifo.
    7. Torsten Heinrich & Jangho Yang & Shuanping Dai, 2020. "Growth, development, and structural change at the firm-level: The example of the PR China," Papers 2012.14503, arXiv.org.
    8. van Kesteren Erik-Jan & Bergkamp Tom, 2023. "Bayesian analysis of Formula One race results: disentangling driver skill and constructor advantage," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 19(4), pages 273-293, December.
    9. Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    10. Watanabe, Hajime & Maruyama, Takuya, 2024. "A Bayesian sample selection model with a binary outcome for handling residential self-selection in individual car ownership," Journal of choice modelling, Elsevier, vol. 51(C).
    11. Anindya Ghose & Sha Yang, 2007. "An Empirical Analysis of Search Engine Advertising: Sponsored Search and Cross-Selling in Electronic Markets," Working Papers 07-35, NET Institute, revised Sep 2007.
    12. Tabi, Andrea & Hille, Stefanie Lena & Wüstenhagen, Rolf, 2014. "What makes people seal the green power deal? — Customer segmentation based on choice experiment in Germany," Ecological Economics, Elsevier, vol. 107(C), pages 206-215.
    13. Xiaoyue Xi & Simon E. F. Spencer & Matthew Hall & M. Kate Grabowski & Joseph Kagaayi & Oliver Ratmann & Rakai Health Sciences Program and PANGEA‐HIV, 2022. "Inferring the sources of HIV infection in Africa from deep‐sequence data with semi‐parametric Bayesian Poisson flow models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 517-540, June.
    14. Kuschnig, Nikolas, 2021. "Bayesian Spatial Econometrics and the Need for Software," Department of Economics Working Paper Series 318, WU Vienna University of Economics and Business.
    15. Deniz Aksoy & David Carlson, 2022. "Electoral support and militants’ targeting strategies," Journal of Peace Research, Peace Research Institute Oslo, vol. 59(2), pages 229-241, March.
    16. Luo, Nanyu & Ji, Feng & Han, Yuting & He, Jinbo & Zhang, Xiaoya, 2024. "Fitting item response theory models using deep learning computational frameworks," OSF Preprints tjxab, Center for Open Science.
    17. Richard Hunt & Shelton Peiris & Neville Weber, 2022. "Estimation methods for stationary Gegenbauer processes," Statistical Papers, Springer, vol. 63(6), pages 1707-1741, December.
    18. Mengelkamp, Esther & Schönland, Thomas & Huber, Julian & Weinhardt, Christof, 2019. "The value of local electricity - A choice experiment among German residential customers," Energy Policy, Elsevier, vol. 130(C), pages 294-303.
    19. Watanabe, Hajime & Maruyama, Takuya, 2023. "A Bayesian instrumental variable model for multinomial choice with correlated alternatives," Journal of choice modelling, Elsevier, vol. 46(C).
    20. D. Fouskakis & G. Petrakos & I. Rotous, 2020. "A Bayesian longitudinal model for quantifying students’ preferences regarding teaching quality indicators," METRON, Springer;Sapienza Università di Roma, vol. 78(2), pages 255-270, August.
    21. Joseph B. Bak-Coleman & Ian Kennedy & Morgan Wack & Andrew Beers & Joseph S. Schafer & Emma S. Spiro & Kate Starbird & Jevin D. West, 2022. "Combining interventions to reduce the spread of viral misinformation," Nature Human Behaviour, Nature, vol. 6(10), pages 1372-1380, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jmarka:v:12:y:2024:i:3:d:10.1057_s41270-024-00312-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.