IDEAS home Printed from https://ideas.repec.org/a/pab/rmcpee/v34y2022i1p446-465.html
   My bibliography  Save this article

El impacto del deterioro medioambiental del Mar Menor en los precios de Airbnb
[The environmental degradation impact in Mar Menor]

Author

Listed:
  • Fernández Ferrero, María del Mar

    (Universidad Politécnica de Cartagena (España))

  • Teruel Gutiérrez, Ricardo

    (Universidad Politécnica de Cartagena (España))

  • Maté Sánchez-Val, Mariluz

    (Universidad Politécnica de Cartagena (España))

Abstract

En 2008, la empresa Airbnb inició su actividad convirtiéndose en la empresa de oferta de alojamientos más representativa de economía colaborativa con más de 6.500.000 alojamientos en todo el mundo. Si bien se han realizado aplicaciones de modelos hedónicos sobre el mercado de alojamientos turísticos de este tipo de plataformas, la literatura sobre cómo afectan los factores relacionados con la contaminación medioambiental en este contexto es escasa. Los problemas de contaminación del agua marina preocupan a un gran número de ciudadanos de la zona turística del Mar Menor (región de Murcia). Gracias a los avances en bases de datos micro-territoriales de carácter abierto (como los datos obtenidos por el Satelite Senitel 3 de la Agencia Espacial Europea) podemos mejorar la precisión de los modelos hedónicos y determinar cuál es el impacto económico de la contaminación del agua marina en el precio de las ofertas de Airbnb localizadas en las zonas costeras. Este es el objetivo del presente estudio. Los resultados muestran un impacto significativo de niveles elevados de contaminación marina reduciendo los precios de los alojamientos Airbnb de la zona del Mar Menor. Por tanto, los gerentes de los servicios turísticos de esta zona tienen incentivos para adoptar medidas estratégicas con el fin de mejorar la situación medioambiental de la laguna.

Suggested Citation

  • Fernández Ferrero, María del Mar & Teruel Gutiérrez, Ricardo & Maté Sánchez-Val, Mariluz, 2022. "El impacto del deterioro medioambiental del Mar Menor en los precios de Airbnb [The environmental degradation impact in Mar Menor]," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 34(1), pages 446-465, December.
  • Handle: RePEc:pab:rmcpee:v:34:y:2022:i:1:p:446-465
    DOI: https://doi.org/10.46661/revmetodoscuanteconempresa.6202
    as

    Download full text from publisher

    File URL: https://www.upo.es/revistas/index.php/RevMetCuant/article/view/6202/6395
    Download Restriction: no

    File URL: https://www.upo.es/revistas/index.php/RevMetCuant/article/view/6202
    Download Restriction: no

    File URL: https://libkey.io/https://doi.org/10.46661/revmetodoscuanteconempresa.6202?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ert, Eyal & Fleischer, Aliza & Magen, Nathan, 2016. "Trust and reputation in the sharing economy: The role of personal photos in Airbnb," Tourism Management, Elsevier, vol. 55(C), pages 62-73.
    2. Zhihua Zhang & Rachel J. C. Chen & Lee D. Han & Lu Yang, 2017. "Key Factors Affecting the Price of Airbnb Listings: A Geographically Weighted Approach," Sustainability, MDPI, vol. 9(9), pages 1-13, September.
    3. Ching-Fu Chen & R. Rothschild, 2010. "An Application of Hedonic Pricing Analysis to the Case of Hotel Rooms in Taipei," Tourism Economics, , vol. 16(3), pages 685-694, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. V. Raul Perez-Sanchez & Leticia Serrano-Estrada & Pablo Marti & Raul-Tomas Mora-Garcia, 2018. "The What, Where, and Why of Airbnb Price Determinants," Sustainability, MDPI, vol. 10(12), pages 1-31, December.
    2. Augusto Voltes-Dorta & Federico Inchausti-Sintes, 2021. "The spatial and quality dimensions of Airbnb markets," Tourism Economics, , vol. 27(4), pages 688-702, June.
    3. Yifei Jiang & Honglei Zhang & Xianting Cao & Ge Wei & Yang Yang, 2023. "How to better incorporate geographic variation in Airbnb price modeling?," Tourism Economics, , vol. 29(5), pages 1181-1203, August.
    4. Chunfang Zhao & Yingliang Wu & Yunfeng Chen & Guohua Chen, 2023. "Multiscale Effects of Hedonic Attributes on Airbnb Listing Prices Based on MGWR: A Case Study of Beijing, China," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    5. Bobrovskaya, Ekaterina & Polbin, Andrey, 2022. "Determinants of short-term rental prices in the sharing economy: The case of Airbnb in Moscow," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 65, pages 5-28.
    6. Zhihua Zhang & Rachel J. C. Fu, 2020. "Accommodation Experience in the Sharing Economy: A Comparative Study of Airbnb Online Reviews," Sustainability, MDPI, vol. 12(24), pages 1-11, December.
    7. Giulia Contu & Luca Frigau & Marco Ortu, 2023. "VGLM proportional odds model to infer hosts’ Airbnb performance," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(5), pages 4069-4094, October.
    8. Meijian Yang & Enjun Xia, 2021. "A Systematic Literature Review on Pricing Strategies in the Sharing Economy," Sustainability, MDPI, vol. 13(17), pages 1-28, August.
    9. Insu Hong & Changsok Yoo, 2020. "Analyzing Spatial Variance of Airbnb Pricing Determinants Using Multiscale GWR Approach," Sustainability, MDPI, vol. 12(11), pages 1-18, June.
    10. Zhihua Zhang & Rachel J. C. Chen & Lee D. Han & Lu Yang, 2017. "Key Factors Affecting the Price of Airbnb Listings: A Geographically Weighted Approach," Sustainability, MDPI, vol. 9(9), pages 1-13, September.
    11. Zhihua Zhang & Rachel J.C. Chen, 2019. "Assessing Airbnb Logistics in Cities: Geographic Information System and Convenience Theory," Sustainability, MDPI, vol. 11(9), pages 1-11, April.
    12. Irem Önder & Christian Weismayer & Ulrich Gunter, 2019. "Spatial price dependencies between the traditional accommodation sector and the sharing economy," Tourism Economics, , vol. 25(8), pages 1150-1166, December.
    13. Josep Lladós-Masllorens & Antoni Meseguer-Artola & Inma Rodríguez-Ardura, 2020. "Understanding Peer-to-Peer, Two-Sided Digital Marketplaces: Pricing Lessons from Airbnb in Barcelona," Sustainability, MDPI, vol. 12(13), pages 1-19, June.
    14. Neus Vila-Brunet & Josep Llach, 2020. "OSS-Qual: Holistic Scale to Assess Customer Quality Perception When Buying Secondhand Products in Online Platforms," Sustainability, MDPI, vol. 12(21), pages 1-15, November.
    15. Bruno Bruna & Faggini Marisa, 2020. "Sharing Competition: An Agent-Based Model for the Short-Term Accommodations Market," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 20(2), pages 1-13, April.
    16. Zuo, Wenming & Bai, Weijing & Zhu, Wenfeng & He, Xinming & Qiu, Xinxin, 2022. "Changes in service quality of sharing accommodation: Evidence from airbnb," Technology in Society, Elsevier, vol. 71(C).
    17. Zhang, Ning & Fan, Xing & He, LiFeng & Cheng, Xin & Zhang, Liang & Liu, Rong, 2024. "The impact of the Seller's facial image on consumer purchase behavior in peer-to-peer accommodation platforms," Journal of Retailing and Consumer Services, Elsevier, vol. 80(C).
    18. Bresciani, Stefano & Ferraris, Alberto & Santoro, Gabriele & Premazzi, Katia & Quaglia, Roberto & Yahiaoui, Dorra & Viglia, Giampaolo, 2021. "The seven lives of Airbnb. The role of accommodation types," Annals of Tourism Research, Elsevier, vol. 88(C).
    19. Sonny Rosenthal & Jean Yi Colette Tan & Ting Fang Poh, 2020. "Reputation Cues as Signals in the Sharing Economy," Social Sciences, MDPI, vol. 9(4), pages 1-14, April.
    20. Athey, Susan & Karlan, Dean & Palikot, Emil & Yuan, Yuan, 2022. "Smiles in Profiles: Improving Fairness and Efficiency Using Estimates of User Preferences in Online Marketplaces," Research Papers 4071, Stanford University, Graduate School of Business.

    More about this item

    Keywords

    modelos hedónicos; Airbnb; contaminación marina; bases de datos abiertas; hedonic models; Airbnb listings; marine pollution; open databases;
    All these keywords.

    JEL classification:

    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • D16 - Microeconomics - - Household Behavior - - - Collaborative Consumption
    • L83 - Industrial Organization - - Industry Studies: Services - - - Sports; Gambling; Restaurants; Recreation; Tourism

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pab:rmcpee:v:34:y:2022:i:1:p:446-465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Publicación Digital - UPO (email available below). General contact details of provider: https://edirc.repec.org/data/dmupoes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.