Modelo de valoración con opciones reales, rejillas trinomial, volatilidad cambiante, sesgo y función isoelástica de utilidad || Valuation model with real options, trinomial lattice, changing volatility, bias and isoelastic utility functions
Author
Abstract
Suggested Citation
DOI: https://doi.org/10.46661/revmetodoscuanteconempresa.4602
Download full text from publisher
References listed on IDEAS
- E. Brandão, Luiz & Dyer, James S. & Hahn, Warren J., 2012. "Volatility estimation for stochastic project value models," European Journal of Operational Research, Elsevier, vol. 220(3), pages 642-648.
- James E. Smith & Robert F. Nau, 1995. "Valuing Risky Projects: Option Pricing Theory and Decision Analysis," Management Science, INFORMS, vol. 41(5), pages 795-816, May.
- Robert JARROW & Andrew RUDD, 2008.
"Approximate Option Valuation For Arbitrary Stochastic Processes,"
World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 1, pages 9-31,
World Scientific Publishing Co. Pte. Ltd..
- Jarrow, Robert & Rudd, Andrew, 1982. "Approximate option valuation for arbitrary stochastic processes," Journal of Financial Economics, Elsevier, vol. 10(3), pages 347-369, November.
- Balieiro Filho, Ruy Gabriel & Rosenfeld, Rogerio, 2004. "Testing option pricing with the Edgeworth expansion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(3), pages 484-490.
- Yisong Tian, 1993. "A modified lattice approach to option pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 13(5), pages 563-577, August.
- António Câmara & San‐Lin Chung, 2006. "Option pricing for the transformed‐binomial class," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 26(8), pages 759-788, August.
- Boyle, Phelim P., 1988. "A Lattice Framework for Option Pricing with Two State Variables," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(1), pages 1-12, March.
- Rubinstein, Mark, 1983. "Displaced Diffusion Option Pricing," Journal of Finance, American Finance Association, vol. 38(1), pages 213-217, March.
- Richard M. H. Suen, 2009.
"Bounding the CRRA Utility Functions,"
Working Papers
200902, University of California at Riverside, Department of Economics, revised Feb 2009.
- Suen, Richard M. H., 2009. "Bounding the CRRA Utility Functions," MPRA Paper 13260, University Library of Munich, Germany.
- Rendleman, Richard J, Jr & Bartter, Brit J, 1979. "Two-State Option Pricing," Journal of Finance, American Finance Association, vol. 34(5), pages 1093-1110, December.
- Bardia Kamrad & Peter Ritchken, 1991. "Multinomial Approximating Models for Options with k State Variables," Management Science, INFORMS, vol. 37(12), pages 1640-1652, December.
- Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
- James E. Smith, 2005. "Alternative Approaches for Solving Real-Options Problems," Decision Analysis, INFORMS, vol. 2(2), pages 89-102, June.
- George M. Jabbour & Marat V. Kramin & Stephen D. Young, 2001. "Two‐State Option Pricing: Binomial Models Revisited," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 21(11), pages 987-1001, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Felipe Isaza Cuervo & Sergio Botero Boterob, 2014. "Aplicación de las opciones reales en la toma de decisiones en los mercados de electricidad," Estudios Gerenciales, Universidad Icesi, November.
- Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
- Josheski Dushko & Apostolov Mico, 2020. "A Review of the Binomial and Trinomial Models for Option Pricing and their Convergence to the Black-Scholes Model Determined Option Prices," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 24(2), pages 53-85, June.
- Carlos Andrés Zapata Quimbayo, 2020. "OPCIONES REALES Una guía teórico-práctica para la valoración de inversiones bajo incertidumbre mediante modelos en tiempo discreto y simulación de Monte Carlo," Books, Universidad Externado de Colombia, Facultad de Finanzas, Gobierno y Relaciones Internacionales, number 138, April.
- Seiji Harikae & James S. Dyer & Tianyang Wang, 2021. "Valuing Real Options in the Volatile Real World," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 171-189, January.
- Carol Alexander & Xi Chen, 2021.
"Model risk in real option valuation,"
Annals of Operations Research, Springer, vol. 299(1), pages 1025-1056, April.
- Carol Alexander & Xi Chen, 2018. "Model Risk in Real Option Valuation," Papers 1809.00817, arXiv.org, revised Sep 2018.
- Mark Broadie & Jérôme Detemple, 1996. "Recent Advances in Numerical Methods for Pricing Derivative Securities," CIRANO Working Papers 96s-17, CIRANO.
- Yuan Hu & W. Brent Lindquist & Svetlozar T. Rachev & Frank J. Fabozzi, 2023. "Option pricing using a skew random walk pricing tree," Papers 2303.17014, arXiv.org.
- Warren J. Hahn & James S. Dyer, 2011. "A Discrete Time Approach for Modeling Two-Factor Mean-Reverting Stochastic Processes," Decision Analysis, INFORMS, vol. 8(3), pages 220-232, September.
- Andrea Gamba & Lenos Trigeorgis, 2007. "An Improved Binomial Lattice Method for Multi-Dimensional Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(5), pages 453-475.
- Zmeskal, Zdenek, 2010. "Generalised soft binomial American real option pricing model (fuzzy-stochastic approach)," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1096-1103, December.
- James Primbs & Muruhan Rathinam & Yuji Yamada, 2007. "Option Pricing with a Pentanomial Lattice Model that Incorporates Skewness and Kurtosis," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(1), pages 1-17.
- Donald J. Brown & Rustam Ibragimov, 2005. "Sign Tests for Dependent Observations and Bounds for Path-Dependent Options," Cowles Foundation Discussion Papers 1518, Cowles Foundation for Research in Economics, Yale University.
- Gambaro, Anna Maria & Kyriakou, Ioannis & Fusai, Gianluca, 2020. "General lattice methods for arithmetic Asian options," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1185-1199.
- Ivivi J. Mwaniki, 2017. "On skewed, leptokurtic returns and pentanomial lattice option valuation via minimal entropy martingale measure," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1358894-135, January.
- Leisen, Dietmar P. J., 1999. "The random-time binomial model," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1355-1386, September.
- Buckley, Adrian & Eijgenhuijsen, Hans, 1997. "A conceptual framework for evaluating foreign investments," Serie Research Memoranda 0008, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
- Ren-Raw Chen & Jeffrey Huang & William Huang & Robert Yu, 2021. "An Artificial Intelligence Approach to the Valuation of American-Style Derivatives: A Use of Particle Swarm Optimization," JRFM, MDPI, vol. 14(2), pages 1-22, February.
- Tianyang Wang & James S. Dyer, 2010. "Valuing Multifactor Real Options Using an Implied Binomial Tree," Decision Analysis, INFORMS, vol. 7(2), pages 185-195, June.
- Manuel Moreno & Javier Navas, 2003.
"On the Robustness of Least-Squares Monte Carlo (LSM) for Pricing American Derivatives,"
Review of Derivatives Research, Springer, vol. 6(2), pages 107-128, May.
- Manuel Moreno & Javier R. Navas, 2001. "On the robustness of least-squares Monte Carlo (LSM) for pricing American derivatives," Economics Working Papers 543, Department of Economics and Business, Universitat Pompeu Fabra.
More about this item
Keywords
opciones reales; trinomial; volatilidad cambiante; funciones isoelásticas de utilidad; aversión variable al riesgo; valuación start-up; real options; trinomial; changing volatility; isoelastic utility functions; variable risk aversion; start-up valuation;All these keywords.
JEL classification:
- G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
- G31 - Financial Economics - - Corporate Finance and Governance - - - Capital Budgeting; Fixed Investment and Inventory Studies
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pab:rmcpee:v:32:y:2021:i:1:p:257-273. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Publicación Digital - UPO (email available below). General contact details of provider: https://edirc.repec.org/data/dmupoes.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.