IDEAS home Printed from https://ideas.repec.org/a/pab/rmcpee/v32y2021i1p257-273.html
   My bibliography  Save this article

Modelo de valoración con opciones reales, rejillas trinomial, volatilidad cambiante, sesgo y función isoelástica de utilidad || Valuation model with real options, trinomial lattice, changing volatility, bias and isoelastic utility functions

Author

Listed:
  • Milanesi, Gastón

    (Universidad Nacional del Sur (Argentina))

Abstract

La valoración de inversiones en empresas de base tecnológica, intangibles y start-up en mercados financieros emergentes, imperfectos e incompletos, tornan cuestionable el tradicional enfoque binomial de opciones reales. Por ello se propone un modelo numérico que modifica al tradicional modelo binomial, incorporando rejillas trinomiales, volatilidad cambiante, funciones isoelásticas de utilidad y aversión al riesgo variable. Estas características pretenden mejorar la valoración de proyectos no convencionales en mercados emergentes. Se empleó el método de análisis de casos para administración analizando la valoración de una estrategia de inversión sobre una firma de base tecnológica. Los resultados obtenidos permiten comparar los diferentes valores, desde el clásico modelo binomial hasta el modelo numérico propuesto. Este último demostró superioridad, debido a que incorpora explícitamente variables en el proceso de valoración, como las preferencias del inversor frente al riesgo y los niveles de volatilidad según el ciclo de vida.|| At emerging financial markets, the R&D, intangible and technological basis firms (TBF) valuation, they make the traditional real option binomial approach questionable. For that, a numerical model that modified the traditional binomial model is proposed, incorporating trinomial lattice, changing volatility, isoelastic utility function and variable risk aversion. These characteristics pretend improve the no conventional project valuation in emerging markets. It is employed the case method of analysis in administration, analysing the investment strategy valuation over a technological basis firm. The obtained results allow to compare the different values, from the classical binomial model until the proposed numerical model. The last showed superiority, because its incorporates explicitly variables in the valuation process, like the investor preference for risk and volatility levels according the life cycle.

Suggested Citation

  • Milanesi, Gastón, 2021. "Modelo de valoración con opciones reales, rejillas trinomial, volatilidad cambiante, sesgo y función isoelástica de utilidad || Valuation model with real options, trinomial lattice, changing volatilit," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 32(1), pages 257-273, December.
  • Handle: RePEc:pab:rmcpee:v:32:y:2021:i:1:p:257-273
    DOI: https://doi.org/10.46661/revmetodoscuanteconempresa.4602
    as

    Download full text from publisher

    File URL: https://www.upo.es/revistas/index.php/RevMetCuant/article/view/4602/5280
    Download Restriction: no

    File URL: https://www.upo.es/revistas/index.php/RevMetCuant/article/view/4602
    Download Restriction: no

    File URL: https://libkey.io/https://doi.org/10.46661/revmetodoscuanteconempresa.4602?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. E. Brandão, Luiz & Dyer, James S. & Hahn, Warren J., 2012. "Volatility estimation for stochastic project value models," European Journal of Operational Research, Elsevier, vol. 220(3), pages 642-648.
    2. James E. Smith & Robert F. Nau, 1995. "Valuing Risky Projects: Option Pricing Theory and Decision Analysis," Management Science, INFORMS, vol. 41(5), pages 795-816, May.
    3. Robert JARROW & Andrew RUDD, 2008. "Approximate Option Valuation For Arbitrary Stochastic Processes," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 1, pages 9-31, World Scientific Publishing Co. Pte. Ltd..
    4. Balieiro Filho, Ruy Gabriel & Rosenfeld, Rogerio, 2004. "Testing option pricing with the Edgeworth expansion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(3), pages 484-490.
    5. Yisong Tian, 1993. "A modified lattice approach to option pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 13(5), pages 563-577, August.
    6. António Câmara & San‐Lin Chung, 2006. "Option pricing for the transformed‐binomial class," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 26(8), pages 759-788, August.
    7. Boyle, Phelim P., 1988. "A Lattice Framework for Option Pricing with Two State Variables," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(1), pages 1-12, March.
    8. Rubinstein, Mark, 1983. "Displaced Diffusion Option Pricing," Journal of Finance, American Finance Association, vol. 38(1), pages 213-217, March.
    9. Richard M. H. Suen, 2009. "Bounding the CRRA Utility Functions," Working Papers 200902, University of California at Riverside, Department of Economics, revised Feb 2009.
    10. Rendleman, Richard J, Jr & Bartter, Brit J, 1979. "Two-State Option Pricing," Journal of Finance, American Finance Association, vol. 34(5), pages 1093-1110, December.
    11. Bardia Kamrad & Peter Ritchken, 1991. "Multinomial Approximating Models for Options with k State Variables," Management Science, INFORMS, vol. 37(12), pages 1640-1652, December.
    12. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    13. James E. Smith, 2005. "Alternative Approaches for Solving Real-Options Problems," Decision Analysis, INFORMS, vol. 2(2), pages 89-102, June.
    14. George M. Jabbour & Marat V. Kramin & Stephen D. Young, 2001. "Two‐State Option Pricing: Binomial Models Revisited," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 21(11), pages 987-1001, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felipe Isaza Cuervo & Sergio Botero Boterob, 2014. "Aplicación de las opciones reales en la toma de decisiones en los mercados de electricidad," Estudios Gerenciales, Universidad Icesi, November.
    2. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    3. Josheski Dushko & Apostolov Mico, 2020. "A Review of the Binomial and Trinomial Models for Option Pricing and their Convergence to the Black-Scholes Model Determined Option Prices," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 24(2), pages 53-85, June.
    4. Carlos Andrés Zapata Quimbayo, 2020. "OPCIONES REALES Una guía teórico-práctica para la valoración de inversiones bajo incertidumbre mediante modelos en tiempo discreto y simulación de Monte Carlo," Books, Universidad Externado de Colombia, Facultad de Finanzas, Gobierno y Relaciones Internacionales, number 138, April.
    5. Seiji Harikae & James S. Dyer & Tianyang Wang, 2021. "Valuing Real Options in the Volatile Real World," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 171-189, January.
    6. Carol Alexander & Xi Chen, 2021. "Model risk in real option valuation," Annals of Operations Research, Springer, vol. 299(1), pages 1025-1056, April.
    7. Mark Broadie & Jérôme Detemple, 1996. "Recent Advances in Numerical Methods for Pricing Derivative Securities," CIRANO Working Papers 96s-17, CIRANO.
    8. Yuan Hu & W. Brent Lindquist & Svetlozar T. Rachev & Frank J. Fabozzi, 2023. "Option pricing using a skew random walk pricing tree," Papers 2303.17014, arXiv.org.
    9. Warren J. Hahn & James S. Dyer, 2011. "A Discrete Time Approach for Modeling Two-Factor Mean-Reverting Stochastic Processes," Decision Analysis, INFORMS, vol. 8(3), pages 220-232, September.
    10. Andrea Gamba & Lenos Trigeorgis, 2007. "An Improved Binomial Lattice Method for Multi-Dimensional Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(5), pages 453-475.
    11. Zmeskal, Zdenek, 2010. "Generalised soft binomial American real option pricing model (fuzzy-stochastic approach)," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1096-1103, December.
    12. James Primbs & Muruhan Rathinam & Yuji Yamada, 2007. "Option Pricing with a Pentanomial Lattice Model that Incorporates Skewness and Kurtosis," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(1), pages 1-17.
    13. Donald J. Brown & Rustam Ibragimov, 2005. "Sign Tests for Dependent Observations and Bounds for Path-Dependent Options," Cowles Foundation Discussion Papers 1518, Cowles Foundation for Research in Economics, Yale University.
    14. Gambaro, Anna Maria & Kyriakou, Ioannis & Fusai, Gianluca, 2020. "General lattice methods for arithmetic Asian options," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1185-1199.
    15. Ivivi J. Mwaniki, 2017. "On skewed, leptokurtic returns and pentanomial lattice option valuation via minimal entropy martingale measure," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1358894-135, January.
    16. Leisen, Dietmar P. J., 1999. "The random-time binomial model," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1355-1386, September.
    17. Buckley, Adrian & Eijgenhuijsen, Hans, 1997. "A conceptual framework for evaluating foreign investments," Serie Research Memoranda 0008, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    18. Ren-Raw Chen & Jeffrey Huang & William Huang & Robert Yu, 2021. "An Artificial Intelligence Approach to the Valuation of American-Style Derivatives: A Use of Particle Swarm Optimization," JRFM, MDPI, vol. 14(2), pages 1-22, February.
    19. Tianyang Wang & James S. Dyer, 2010. "Valuing Multifactor Real Options Using an Implied Binomial Tree," Decision Analysis, INFORMS, vol. 7(2), pages 185-195, June.
    20. Manuel Moreno & Javier Navas, 2003. "On the Robustness of Least-Squares Monte Carlo (LSM) for Pricing American Derivatives," Review of Derivatives Research, Springer, vol. 6(2), pages 107-128, May.

    More about this item

    Keywords

    opciones reales; trinomial; volatilidad cambiante; funciones isoelásticas de utilidad; aversión variable al riesgo; valuación start-up; real options; trinomial; changing volatility; isoelastic utility functions; variable risk aversion; start-up valuation;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G31 - Financial Economics - - Corporate Finance and Governance - - - Capital Budgeting; Fixed Investment and Inventory Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pab:rmcpee:v:32:y:2021:i:1:p:257-273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Publicación Digital - UPO (email available below). General contact details of provider: https://edirc.repec.org/data/dmupoes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.