IDEAS home Printed from https://ideas.repec.org/a/pab/rmcpee/v24y2018i1169-189.html
   My bibliography  Save this article

Métodos cuantitativos para un modelo de regresión lineal con multicolinealidad. Aplicación a rendimientos de letras del tesoro || Quantitative Methods for a Linear Regression Model with Multicollinearity. Application to Yields of Treasury Bills

Author

Listed:
  • Salmerón Gómez, Román

    (Departamento de Métodos Cuantitativos para la Economía y la Empresa. Universidad de Granada (España))

  • Rodríguez Martínez, Eduardo

    (Máster en Técnicas Cuantitativas en Gestión Empresarial. Universidad de Granada (España))

Abstract

Es conocido que, cuando en el modelo de regresión lineal existe un alto grado de multicolinealidad, los resultados obtenidos a partir del método de mínimos cuadrados ordinarios (MCO) son inestables. Como solución a esta situación, en este trabajo se presentan los métodos de alzado, cresta y variables ortogonales como alternativa a la estimación por MCO. También se muestra que la regresión con variables ortogonales tiene sentido independientemente de la existencia de multicolinealidad grave, ya que permite dar respuesta a cuestiones no accesibles con el modelo original. Dichas metodologías se aplican a un conjunto de datos de rendimientos de letras del tesoro. || It is known that, when in the linear regression model there is a high degree of multicollinearity, the results obtained by using the Ordinary Least Squares (OLS) method are unstable. As a solution to this situation, in this paper we present the raised method, the ridge method and the orthogonal variables method as an alternative to the estimate by OLS. It is also shown that regression with orthogonal variables makes sense regardless of the existence of serious multicollinearity because it allows to answer questions which are not accessible when using the original model. These methodologies are applied to a data set of yields of treasury bills.

Suggested Citation

  • Salmerón Gómez, Román & Rodríguez Martínez, Eduardo, 2017. "Métodos cuantitativos para un modelo de regresión lineal con multicolinealidad. Aplicación a rendimientos de letras del tesoro || Quantitative Methods for a Linear Regression Model with Multicollinear," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 24(1), pages 169-189, Diciembre.
  • Handle: RePEc:pab:rmcpee:v:24:y:2018:i:1:169-189
    as

    Download full text from publisher

    File URL: https://www.upo.es/revistas/index.php/RevMetCuant/article/view/2886
    Download Restriction: no

    File URL: https://www.upo.es/revistas/index.php/RevMetCuant/article/view/2886/2281
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Belsley, David A., 1982. "Assessing the presence of harmful collinearity and other forms of weak data through a test for signal-to-noise," Journal of Econometrics, Elsevier, vol. 20(2), pages 211-253, November.
    2. John Zhang & Mahmud Ibrahim, 2005. "A simulation study on SPSS ridge regression and ordinary least squares regression procedures for multicollinearity data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(6), pages 571-588.
    3. Spanos, Aris & McGuirk, Anya, 2002. "The problem of near-multicollinearity revisited: erratic vs systematic volatility," Journal of Econometrics, Elsevier, vol. 108(2), pages 365-393, June.
    4. C.B. Garc�a & J. Garc�a & M.M. L�pez Mart�n & R. Salmer�n, 2015. "Collinearity: revisiting the variance inflation factor in ridge regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 648-661, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José García & Román Salmerón & Catalina García & María del Mar López Martín, 2016. "Standardization of Variables and Collinearity Diagnostic in Ridge Regression," International Statistical Review, International Statistical Institute, vol. 84(2), pages 245-266, August.
    2. Hao, Jinghui & Heerink, Nico & Heijman, Wim & Bijman, Jos, 2017. "Cooperatives Membership And Smallholder Farmers’ Welfare - Evidence From Shaanxi And Shandong Provinces, China," 2017 International Congress, August 28-September 1, 2017, Parma, Italy 260914, European Association of Agricultural Economists.
    3. McGuirk, Anya M. & Spanos, Aris, 2004. "Revisiting Error Autocorrelation Correction: Common Factor Restrictions And Granger Causality," 2004 Annual meeting, August 1-4, Denver, CO 20176, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    4. Andrea Poli & Angelo Gemignani & Mario Miccoli, 2022. "Randomized Trial on the Effects of a Group EMDR Intervention on Narrative Complexity and Specificity of Autobiographical Memories: A Path Analytic and Supervised Machine-Learning Study," IJERPH, MDPI, vol. 19(13), pages 1-18, June.
    5. Spanos, Aris, 2010. "Statistical adequacy and the trustworthiness of empirical evidence: Statistical vs. substantive information," Economic Modelling, Elsevier, vol. 27(6), pages 1436-1452, November.
    6. Lee C. Adkins & Melissa S. Waters & R. Carter Hill, 2015. "Collinearity Diagnostics in gretl," Economics Working Paper Series 1506, Oklahoma State University, Department of Economics and Legal Studies in Business.
    7. Hao, Jinghui & Bijman, Jos & Gardebroek, Cornelis & Heerink, Nico & Heijman, Wim & Huo, Xuexi, 2018. "Cooperative membership and farmers’ choice of marketing channels – Evidence from apple farmers in Shaanxi and Shandong Provinces, China," Food Policy, Elsevier, vol. 74(C), pages 53-64.
    8. C. A. Uzuke & J. I. Mbegbu, 2016. "Graphical Investigation of Ridge Estimators When the Eigenvalues of the Matrix (X'X) are Skewed," International Journal of Sciences, Office ijSciences, vol. 5(03), pages 78-100, March.
    9. Michaelides, Michael & Spanos, Aris, 2020. "On modeling heterogeneity in linear models using trend polynomials," Economic Modelling, Elsevier, vol. 85(C), pages 74-86.
    10. Román Salmerón-Gómez & Ainara Rodríguez-Sánchez & Catalina García-García, 2020. "Diagnosis and quantification of the non-essential collinearity," Computational Statistics, Springer, vol. 35(2), pages 647-666, June.
    11. Joseph, Agnes S. & Kiviet, Jan F., 2005. "Viewing the relative efficiency of IV estimators in models with lagged and instantaneous feedbacks," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 417-444, April.
    12. Bernardo Fanfani, 2019. "The Employment Effects of Collective Bargaining," Working papers 064, Department of Economics, Social Studies, Applied Mathematics and Statistics (Dipartimento di Scienze Economico-Sociali e Matematico-Statistiche), University of Torino.
    13. McGuirk, Anya M. & Spanos, Aris, 2002. "The Linear Regression Model With Autocorrelated Errors: Just Say No To Error Autocorrelation," 2002 Annual meeting, July 28-31, Long Beach, CA 19905, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    14. Chen, Honghui & Singal, Vijay & Whitelaw, Robert F., 2016. "Comovement revisited," Journal of Financial Economics, Elsevier, vol. 121(3), pages 624-644.
    15. repec:grm:oikosp:202007 is not listed on IDEAS
    16. Román Salmerón & José García & Catalina García & María del Mar López, 2018. "Transformation of variables and the condition number in ridge estimation," Computational Statistics, Springer, vol. 33(3), pages 1497-1524, September.
    17. M. Hashem Pesaran & Ron P. Smith, 2017. "Posterior Means and Precisions of the Coefficients in Linear Models with Highly Collinear Regressors," CESifo Working Paper Series 6785, CESifo.
    18. Lei, Heng & Xue, Minggao & Liu, Huiling & Ye, Jing, 2023. "Precious metal as a safe haven for global ESG stocks: Portfolio implications for socially responsible investing," Resources Policy, Elsevier, vol. 80(C).
    19. Devicienti, Francesco & Fanfani, Bernardo, 2021. "Firms' Margins of Adjustment to Wage Growth: The Case of Italian Collective Bargaining," IZA Discussion Papers 14532, Institute of Labor Economics (IZA).
    20. Roman Salmerón Gómez & José García Pérez & María Del Mar López Martín & Catalina García García, 2016. "Collinearity diagnostic applied in ridge estimation through the variance inflation factor," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(10), pages 1831-1849, August.
    21. Yow-Jen Jou & Chien-Chia Huang & Hsun-Jung Cho, 2014. "A VIF-based optimization model to alleviate collinearity problems in multiple linear regression," Computational Statistics, Springer, vol. 29(6), pages 1515-1541, December.

    More about this item

    Keywords

    modelos de regresión; multicolinealidad; regresión alzada; regresión cresta; regresión con variables ortogonales; regression models; multicollinearity; raised regression; ridge regression; regression with orthogonal variables;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pab:rmcpee:v:24:y:2018:i:1:169-189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Publicación Digital - UPO (email available below). General contact details of provider: https://edirc.repec.org/data/dmupoes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.