IDEAS home Printed from https://ideas.repec.org/p/ags/aaea02/19905.html
   My bibliography  Save this paper

The Linear Regression Model With Autocorrelated Errors: Just Say No To Error Autocorrelation

Author

Listed:
  • McGuirk, Anya M.
  • Spanos, Aris

Abstract

This paper focuses on the practice of serial correlation correcting of the Linear Regression Model (LRM) by modeling the error. Simple Monte Carlo experiments are used to demonstrate the following points regarding this practice. First, the common factor restrictions implicitly imposed on the temporal structure of yt and xt appear to be completely unreasonable for any real world application. Second, when one compares the Autocorrelation-Corrected LRM (ACLRM) model estimates with estimates from the (unrestricted) Dynamic Linear Regression Model (DLRM) encompassing the ACLRM there is no significant gain in efficiency! Third, as expected, when the common factor restrictions do not hold the LRM model gives poor estimates of the true parameters and estimation of the ACLRM simply gives rise to different misleading results! On the other hand, estimates from the DLRM and the corresponding VAR model are very reliable. Fourth, the power of the usual Durbin Watson test (DW) of autocorrelation is much higher when the common factor restrictions do hold than when they do not. But, a more general test of autocorrelation is shown to perform almost as well as the DW when the common factor restrictions do hold and significantly better than the DW when the restrictions do not hold. Fifth, we demonstrate how simple it is to, at least, test the common factor restrictions imposed and we illustrate how powerful this test can be.

Suggested Citation

  • McGuirk, Anya M. & Spanos, Aris, 2002. "The Linear Regression Model With Autocorrelated Errors: Just Say No To Error Autocorrelation," 2002 Annual meeting, July 28-31, Long Beach, CA 19905, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  • Handle: RePEc:ags:aaea02:19905
    DOI: 10.22004/ag.econ.19905
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/19905/files/sp02mc03.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.19905?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John B. Davis & D. W. Hands & Uskali Mäki (ed.), 1998. "The Handbook of Economic Methodology," Books, Edward Elgar Publishing, number 741.
    2. Hendry, David F & Mizon, Grayham E, 1978. "Serial Correlation as a Convenient Simplification, not a Nuisance: A Comment on a Study of the Demand for Money by the Bank of England," Economic Journal, Royal Economic Society, vol. 88(351), pages 549-563, September.
    3. Spanos,Aris, 1999. "Probability Theory and Statistical Inference," Cambridge Books, Cambridge University Press, number 9780521424080.
    4. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119.
    5. Spanos, Aris & McGuirk, Anya, 2002. "The problem of near-multicollinearity revisited: erratic vs systematic volatility," Journal of Econometrics, Elsevier, vol. 108(2), pages 365-393, June.
    6. Hoover, Kevin D, 1988. "On the Pitfalls of Untested Common-Factor Restrictions: The Case of the Inverted Fisher Hypothesis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 50(2), pages 125-138, May.
    7. Sargan, J D, 1980. "Some Tests of Dynamic Specification for a Single Equation," Econometrica, Econometric Society, vol. 48(4), pages 879-897, May.
    8. Spanos, Aris, 1995. "On theory testing in econometrics : Modeling with nonexperimental data," Journal of Econometrics, Elsevier, vol. 67(1), pages 189-226, May.
    9. Spanos,Aris, 1986. "Statistical Foundations of Econometric Modelling," Cambridge Books, Cambridge University Press, number 9780521269124.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vietha Devia Sagita Sumantri, 2020. "Analysis Factors Affecting Indonesia Stock Market (Case Studies on Consumer Goods Index)," ACTA VSFS, University of Finance and Administration, vol. 14(1), pages 10-23.
    2. Sriananthakumar, Sivagowry, 2013. "Testing linear regression model with AR(1) errors against a first-order dynamic linear regression model with white noise errors: A point optimal testing approach," Economic Modelling, Elsevier, vol. 33(C), pages 126-136.
    3. Nivens, Heather D. & Kastens, Terry L. & Dhuyvetter, Kevin C. & Featherstone, Allen M., 2002. "Using Satellite Imagery In Predicting Kansas Farmland Values," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 27(2), pages 1-17, December.
    4. Simone Tonini & Francesca Chiaromonte & Alessandro Giovannelli, 2022. "On the impact of serial dependence on penalized regression methods," LEM Papers Series 2022/21, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McGuirk, Anya M. & Spanos, Aris, 2004. "Revisiting Error Autocorrelation Correction: Common Factor Restrictions And Granger Causality," 2004 Annual meeting, August 1-4, Denver, CO 20176, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    2. Anya McGuirk & Aris Spanos, 2009. "Revisiting Error‐Autocorrelation Correction: Common Factor Restrictions and Granger Non‐Causality," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(2), pages 273-294, April.
    3. Mizon, Grayham E., 1995. "A simple message for autocorrelation correctors: Don't," Journal of Econometrics, Elsevier, vol. 69(1), pages 267-288, September.
    4. Aris Spanos & Niki Papadopoulou, 2013. "A Small Macroeconometric Model for the Cyprus Economy," Working Papers 2013-02, Central Bank of Cyprus.
    5. Christopher L. Gilbert & Duo Qin, 2005. "The First Fifty Years of Modern Econometrics," Working Papers 544, Queen Mary University of London, School of Economics and Finance.
    6. Christopher L. Gilbert & Duo Qin, 2005. "The First Fifty Years of Modern Econometrics," Working Papers 544, Queen Mary University of London, School of Economics and Finance.
    7. Spanos, Aris, 2010. "Akaike-type criteria and the reliability of inference: Model selection versus statistical model specification," Journal of Econometrics, Elsevier, vol. 158(2), pages 204-220, October.
    8. Charles G. Renfro, 2009. "The Practice of Econometric Theory," Advanced Studies in Theoretical and Applied Econometrics, Springer, number 978-3-540-75571-5, July-Dece.
    9. Aris Spanos & Niki Papadopoulou, 2013. "A Small Macroeconometric Model for the Cyprus Economy," Working Papers 2013-2, Central Bank of Cyprus.
    10. Aris Spanos, 2009. "Statistical Misspecification and the Reliability of Inference: The Simple T-Test in the Presence of Markov Dependence," Korean Economic Review, Korean Economic Association, vol. 25, pages 165-213.
    11. Jeffrey Edwards & Anya McGuirk, 2004. "Reply to Chang and Ram: Statistical Adequacy and the Reliability of Inference," Econ Journal Watch, Econ Journal Watch, vol. 1(2), pages 244-259, August.
    12. Aris Spanos, 2006. "Revisiting the omitted variables argument: Substantive vs. statistical adequacy," Journal of Economic Methodology, Taylor & Francis Journals, vol. 13(2), pages 179-218.
    13. Glaser, Markus, 2003. "Online Broker Investors: Demographic Information, Investment Strategy, Portfolio Positions, and Trading Activity," Sonderforschungsbereich 504 Publications 03-18, Sonderforschungsbereich 504, Universität Mannheim;Sonderforschungsbereich 504, University of Mannheim.
    14. Neil R. Ericsson, 2021. "Dynamic Econometrics in Action: A Biography of David F. Hendry," International Finance Discussion Papers 1311, Board of Governors of the Federal Reserve System (U.S.).
    15. Kremers, Jeroen J M & Ericsson, Neil R & Dolado, Juan J, 1992. "The Power of Cointegration Tests," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 54(3), pages 325-348, August.
    16. Psaradakis, Zacharias & Sola, Martin, 1996. "On the power of tests for superexogeneity and structural invariance," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 151-175.
    17. Campos, Julia & Ericsson, Neil R. & Hendry, David F., 1996. "Cointegration tests in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 70(1), pages 187-220, January.
    18. Aris Spanos & David F. Hendry & J. James Reade, 2008. "Linear vs. Log‐linear Unit‐Root Specification: An Application of Mis‐specification Encompassing," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(s1), pages 829-847, December.
    19. Spanos, Aris, 2010. "Statistical adequacy and the trustworthiness of empirical evidence: Statistical vs. substantive information," Economic Modelling, Elsevier, vol. 27(6), pages 1436-1452, November.
    20. Adrian C. Darnell, 1994. "A Dictionary Of Econometrics," Books, Edward Elgar Publishing, number 118.

    More about this item

    Keywords

    Research Methods/ Statistical Methods;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea02:19905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.