IDEAS home Printed from https://ideas.repec.org/a/ovi/oviste/vxxiiy2022i1p591-597.html
   My bibliography  Save this article

Brief Analysis of the Evolution of Female Employees in Recent Years. Research Using Mathematical Modelling

Author

Listed:
  • Constantin Ilie

    (“Ovidius†University of Constanta, Romania)

  • Margareta Ilie

    (“Ovidius†University of Constanta, Romania)

Abstract

The numbers of male against female employment are still an actual and sensitive issue. Thus, the forecast of male and female employment evolution can offer the possibility to make decisions for the minimization of female employment disadvantages. One of the best used methods for model and simulation to forecast is the mathematical applications as artificial neural networks. This kind of method offers the possibility to enhance, understand and forecast the evolutions and influences between different data values. The objective of this paper is to find the proper artificial neural network for modeling and simulating of female employment evolution, under the influence of different indices. The structure considered the best for the simulated values was using hyperbolic tan function and quasi-Newton solver. Also, the ANN structures provide an average feature importance of 51.62% for Total investment, 19.95% for GDP, 15.06% for GERD and 13.37% for Production values.

Suggested Citation

  • Constantin Ilie & Margareta Ilie, 2022. "Brief Analysis of the Evolution of Female Employees in Recent Years. Research Using Mathematical Modelling," Ovidius University Annals, Economic Sciences Series, Ovidius University of Constantza, Faculty of Economic Sciences, vol. 0(1), pages 591-597, September.
  • Handle: RePEc:ovi:oviste:v:xxii:y:2022:i:1:p:591-597
    as

    Download full text from publisher

    File URL: https://stec.univ-ovidius.ro/html/anale/RO/2022-2/Section%204/17.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roberto Patuelli & Aura Reggiani & Peter Nijkamp & Uwe Blien, 2006. "New Neural Network Methods for Forecasting Regional Employment: an Analysis of German Labour Markets," Spatial Economic Analysis, Taylor & Francis Journals, vol. 1(1), pages 7-30.
    2. repec:dgr:uvatin:20060020 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Patuelli & Aura Reggiani & Peter Nijkamp & Norbert Schanne, 2011. "Neural networks for regional employment forecasts: are the parameters relevant?," Journal of Geographical Systems, Springer, vol. 13(1), pages 67-85, March.
    2. Matthias Firgo & Oliver Fritz, 2017. "Does having the right visitor mix do the job? Applying an econometric shift-share model to regional tourism developments," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 58(3), pages 469-490, May.
    3. Schanne, N. & Wapler, R. & Weyh, A., 2010. "Regional unemployment forecasts with spatial interdependencies," International Journal of Forecasting, Elsevier, vol. 26(4), pages 908-926, October.
    4. Nsangou, Jean Calvin & Kenfack, Joseph & Nzotcha, Urbain & Ngohe Ekam, Paul Salomon & Voufo, Joseph & Tamo, Thomas T., 2022. "Explaining household electricity consumption using quantile regression, decision tree and artificial neural network," Energy, Elsevier, vol. 250(C).
    5. Roberto Patuelli & Daniel A. Griffith & Michael Tiefelsdorf & Peter Nijkamp, 2011. "Spatial Filtering and Eigenvector Stability: Space-Time Models for German Unemployment Data," International Regional Science Review, , vol. 34(2), pages 253-280, April.
    6. Buda, Rodolphe, 2008. "Estimation de l'emploi régional et sectoriel salarié français : application à l'année 2006 [Estimation of the french salaried regional and sectoral employment: application to the year 2006]," MPRA Paper 34881, University Library of Munich, Germany.
    7. Roberto Patuelli & Daniel A. Griffith & Michael Tiefelsdorf & Peter Nijkamp, 2006. "The Use of Spatial Filtering Techniques: The Spatial and Space-time Structure of German Unemployment Data," Tinbergen Institute Discussion Papers 06-049/3, Tinbergen Institute.
    8. repec:dgr:vuarem:2009-14 is not listed on IDEAS
    9. Katharina Hampel & Marcus Kunz & Norbert Schanne & Ruediger Wapler & Antje Weyh, 2006. "Regional Unemployment Forecasting Using Structural Component Models With Spatial Autocorrelation," ERSA conference papers ersa06p196, European Regional Science Association.
    10. Gian Zaccomer & Pamela Mason, 2011. "A new spatial shift-share decomposition for the regional growth analysis: a local study of the employment based on Italian Business Statistical Register," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(3), pages 329-356, August.
    11. Jean‐François Ruault & Yves Schaeffer, 2020. "Scalable shift‐share analysis: Novel framework and application to France," Papers in Regional Science, Wiley Blackwell, vol. 99(6), pages 1667-1690, December.

    More about this item

    Keywords

    female employment; data model; artificial neural network (ANN);
    All these keywords.

    JEL classification:

    • J21 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Labor Force and Employment, Size, and Structure

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ovi:oviste:v:xxii:y:2022:i:1:p:591-597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gheorghiu Gabriela (email available below). General contact details of provider: https://edirc.repec.org/data/feoviro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.