IDEAS home Printed from https://ideas.repec.org/a/oup/rfinst/v36y2023i9p3603-3642..html
   My bibliography  Save this article

How to Talk When a Machine Is Listening: Corporate Disclosure in the Age of AI

Author

Listed:
  • Sean Cao Robert H. Smith
  • Wei Jiang
  • Baozhong Yang J. Mack Robinson
  • Alan L Zhang
  • Tarun Ramadorai

Abstract

Growing AI readership (proxied for by machine downloads and ownership by AI-equipped investors) motivates firms to prepare filings friendlier to machine processing and to mitigate linguistic tones that are unfavorably perceived by algorithms. Loughran and McDonald (2011) and BERT available since 2018 serve as event studies supporting attribution of the decrease in the measured negative sentiment to increased machine readership. This relationship is stronger among firms with higher benefits to (e.g., external financing needs) or lower cost (e.g., litigation risk) of sentiment management. This is the first study exploring the feedback effect on corporate disclosure in response to technology.Authors have furnished an Internet Appendix, which is available on the Oxford University Press Web site next to the link to the final published paper online.

Suggested Citation

  • Sean Cao Robert H. Smith & Wei Jiang & Baozhong Yang J. Mack Robinson & Alan L Zhang & Tarun Ramadorai, 2023. "How to Talk When a Machine Is Listening: Corporate Disclosure in the Age of AI," The Review of Financial Studies, Society for Financial Studies, vol. 36(9), pages 3603-3642.
  • Handle: RePEc:oup:rfinst:v:36:y:2023:i:9:p:3603-3642.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/rfs/hhad021
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    JEL classification:

    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G30 - Financial Economics - - Corporate Finance and Governance - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:rfinst:v:36:y:2023:i:9:p:3603-3642.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/sfsssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.