IDEAS home Printed from https://ideas.repec.org/a/oup/revfin/v10y2006i2p221-260.html
   My bibliography  Save this article

Towards a General Theory of Good-Deal Bounds

Author

Listed:
  • Tomas Björk
  • Irina Slinko

Abstract

We consider an incomplete market in the form of a multidimensional Markovian factor model, driven by a general marked point process (representing discrete jump events), as well as by a standard multidimensional Wiener process. Within this framework, we study arbitrage-free gooddeal pricing bounds for derivative assets, thereby extending the results by Cochrane and Saá Requejo (2000) to the point process case, while, at the same time, obtaining a radical simplification of the theory. To illustrate, we present numerical results for the classic Merton jump-diffusion model. As a by-product of the general theory, we derive extended Hansen-Jagannathan bounds for the Sharpe Ratio process in the point process setting. Copyright 2006, Oxford University Press.

Suggested Citation

  • Tomas Björk & Irina Slinko, 2006. "Towards a General Theory of Good-Deal Bounds," Review of Finance, European Finance Association, vol. 10(2), pages 221-260.
  • Handle: RePEc:oup:revfin:v:10:y:2006:i:2:p:221-260
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10679-006-8279-1
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. John H. Cochrane & Jesus Saa-Requejo, 2000. "Beyond Arbitrage: Good-Deal Asset Price Bounds in Incomplete Markets," Journal of Political Economy, University of Chicago Press, vol. 108(1), pages 79-119, February.
    2. Hansen, Lars Peter & Jagannathan, Ravi, 1991. "Implications of Security Market Data for Models of Dynamic Economies," Journal of Political Economy, University of Chicago Press, vol. 99(2), pages 225-262, April.
    3. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bayraktar, Erhan & Milevsky, Moshe A. & David Promislow, S. & Young, Virginia R., 2009. "Valuation of mortality risk via the instantaneous Sharpe ratio: Applications to life annuities," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 676-691, March.
    2. Hainaut, Donatien & Devolder, Pierre & Pelsser, Antoon, 2018. "Robust evaluation of SCR for participating life insurances under Solvency II," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 107-123.
    3. Ibáñez, Alfredo, 2008. "Factorization of European and American option prices under complete and incomplete markets," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 311-325, February.
    4. Chen, An & Hieber, Peter & Nguyen, Thai, 2019. "Constrained non-concave utility maximization: An application to life insurance contracts with guarantees," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1119-1135.
    5. Laurence Carassus & Emmanuel Temam, 2010. "Pricing and Hedging Basis Risk under No Good Deal Assumption," Working Papers hal-00498479, HAL.
    6. L. Carassus & E. Temam, 2014. "Pricing and hedging basis risk under no good deal assumption," Annals of Finance, Springer, vol. 10(1), pages 127-170, February.
    7. Bion-Nadal, Jocelyne, 2009. "Bid-ask dynamic pricing in financial markets with transaction costs and liquidity risk," Journal of Mathematical Economics, Elsevier, vol. 45(11), pages 738-750, December.
    8. Josa-Fombellida, Ricardo & Rincón-Zapatero, Juan Pablo, 2012. "Stochastic pension funding when the benefit and the risky asset follow jump diffusion processes," European Journal of Operational Research, Elsevier, vol. 220(2), pages 404-413.
    9. Josa-Fombellida, Ricardo & López-Casado, Paula, 2023. "A defined benefit pension plan game with Brownian and Poisson jumps uncertainty," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1294-1311.
    10. Chen, Chang-Chih & Chang, Chia-Chien & Sun, Edward W. & Yu, Min-Teh, 2022. "Optimal decision of dynamic wealth allocation with life insurance for mitigating health risk under market incompleteness," European Journal of Operational Research, Elsevier, vol. 300(2), pages 727-742.
    11. Young, Virginia R., 2008. "Pricing life insurance under stochastic mortality via the instantaneous Sharpe ratio," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 691-703, April.
    12. Akuzawa, Toshinao & Nishiyama, Yoshihiko, 2013. "Implied Sharpe ratios of portfolios with options: Application to Nikkei futures and listed options," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 335-357.
    13. Jocelyne Bion-Nadal & Giulia Nunno, 2013. "Dynamic no-good-deal pricing measures and extension theorems for linear operators on L ∞," Finance and Stochastics, Springer, vol. 17(3), pages 587-613, July.
    14. Marroquı´n-Martı´nez, Naroa & Moreno, Manuel, 2013. "Optimizing bounds on security prices in incomplete markets. Does stochastic volatility specification matter?," European Journal of Operational Research, Elsevier, vol. 225(3), pages 429-442.
    15. Masaaki Fukasawa & Mitja Stadje, 2018. "Perfect hedging under endogenous permanent market impacts," Finance and Stochastics, Springer, vol. 22(2), pages 417-442, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alfredo Ibáñez, 2005. "Option-Pricing in Incomplete Markets: The Hedging Portfolio plus a Risk Premium-Based Recursive Approach," Computing in Economics and Finance 2005 216, Society for Computational Economics.
    2. Huggett, Mark & Kaplan, Greg, 2011. "Human capital values and returns: Bounds implied by earnings and asset returns data," Journal of Economic Theory, Elsevier, vol. 146(3), pages 897-919, May.
    3. Bansal, Ravi & Miller, Shane & Song, Dongho & Yaron, Amir, 2021. "The term structure of equity risk premia," Journal of Financial Economics, Elsevier, vol. 142(3), pages 1209-1228.
    4. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    5. Oleg Bondarenko & Iñaki Longarela, 2009. "A general framework for the derivation of asset price bounds: an application to stochastic volatility option models," Review of Derivatives Research, Springer, vol. 12(2), pages 81-107, July.
    6. Ibáñez, Alfredo, 2008. "Factorization of European and American option prices under complete and incomplete markets," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 311-325, February.
    7. David Backus & Mikhail Chernov & Ian Martin, 2011. "Disasters Implied by Equity Index Options," Journal of Finance, American Finance Association, vol. 66(6), pages 1969-2012, December.
    8. Stefan Nagel, 2013. "Empirical Cross-Sectional Asset Pricing," Annual Review of Financial Economics, Annual Reviews, vol. 5(1), pages 167-199, November.
    9. Raimund M. Kovacevic, 2019. "Valuation and pricing of electricity delivery contracts: the producer’s view," Annals of Operations Research, Springer, vol. 275(2), pages 421-460, April.
    10. Valentin Haddad & Serhiy Kozak & Shrihari Santosh & Stijn Van Nieuwerburgh, 2020. "Factor Timing," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 1980-2018.
    11. Dong‐Hyun Ahn & H. Henry Cao & Stéphane Chrétien, 2009. "Portfolio Performance Measurement: a No Arbitrage Bounds Approach," European Financial Management, European Financial Management Association, vol. 15(2), pages 298-339, March.
    12. Bakshi, Gurdip & Chabi-Yo, Fousseni, 2011. "Variance Bounds on the Permanent and Transitory Components of Stochastic Discount Factors," Working Paper Series 2011-11, Ohio State University, Charles A. Dice Center for Research in Financial Economics.
    13. Ian Martin, 2021. "On the Autocorrelation of the Stock Market [X-CAPM: An Extrapolative Capital Asset Pricing Model]," Journal of Financial Econometrics, Oxford University Press, vol. 19(1), pages 39-52.
    14. Backus, David & Boyarchenko, Nina & Chernov, Mikhail, 2018. "Term structures of asset prices and returns," Journal of Financial Economics, Elsevier, vol. 129(1), pages 1-23.
    15. Antonio E. Bernardo & Olivier Ledoit, 2000. "Gain, Loss, and Asset Pricing," Journal of Political Economy, University of Chicago Press, vol. 108(1), pages 144-172, February.
    16. Chen, Chang-Chih & Ho, Kung-Cheng & Yan, Cheng & Yeh, Chung-Ying & Yu, Min-Teh, 2023. "Does ambiguity matter for corporate debt financing? Theory and evidence," Journal of Corporate Finance, Elsevier, vol. 80(C).
    17. Hanno Lustig & Adrien Verdelhan, 2016. "Does Incomplete Spanning in International Financial Markets Help to Explain Exchange Rates?," NBER Working Papers 22023, National Bureau of Economic Research, Inc.
    18. Peter Ryan, 2000. "Tighter Option Bounds from Multiple Exercise Prices," Review of Derivatives Research, Springer, vol. 4(2), pages 155-188, May.
    19. Aleš Černý, 2003. "Generalised Sharpe Ratios and Asset Pricing in Incomplete Markets," Review of Finance, European Finance Association, vol. 7(2), pages 191-233.
    20. Jonathan Fletcher & Andrew Marshall, 2014. "Investor Heterogeneity and the Cross-section of U.K. Investment Trust Performance," Journal of Financial Services Research, Springer;Western Finance Association, vol. 45(1), pages 67-89, February.

    More about this item

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:revfin:v:10:y:2006:i:2:p:221-260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/eufaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.