IDEAS home Printed from https://ideas.repec.org/a/oup/jfinec/v8y2010i4p450-480.html
   My bibliography  Save this article

Bayesian Inference for Discretely Sampled Markov Processes with Closed-Form Likelihood Expansions

Author

Listed:
  • Osnat Stramer
  • Matthew Bognar
  • Paul Schneider

Abstract

This article proposes a new Bayesian Markov chain Monte Carlo (MCMC) methodology for estimation of a wide class of multidimensional jump-diffusion models. Our approach is based on the closed-form (CF) likelihood approximations of Aït-Sahalia (2002, 2008). The CF likelihood approximation does not integrate to 1; it is very close to 1 when in the center of the distribution but can differ markedly from 1 when far in the tails. We propose an MCMC algorithm that addresses the problems that arise when the CF approximation is applied in a Bayesian context. The efficacy of our approach is demonstrated in a simulation study of the Cox--Ingersoll--Ross and Heston models and is applied to two well-known datasets. Copyright The Author 2010. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org, Oxford University Press.

Suggested Citation

  • Osnat Stramer & Matthew Bognar & Paul Schneider, 2010. "Bayesian Inference for Discretely Sampled Markov Processes with Closed-Form Likelihood Expansions," Journal of Financial Econometrics, Oxford University Press, vol. 8(4), pages 450-480, Fall.
  • Handle: RePEc:oup:jfinec:v:8:y:2010:i:4:p:450-480
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/jjfinec/nbp027
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Isambi Mbalawata & Simo Särkkä & Heikki Haario, 2013. "Parameter estimation in stochastic differential equations with Markov chain Monte Carlo and non-linear Kalman filtering," Computational Statistics, Springer, vol. 28(3), pages 1195-1223, June.
    2. Fernández-Villaverde, Jesús & Guerrón-Quintana, Pablo & Rubio-Ramírez, Juan F., 2015. "Estimating dynamic equilibrium models with stochastic volatility," Journal of Econometrics, Elsevier, vol. 185(1), pages 216-229.
    3. Cerrato, Mario & Lo, Chia Chun & Skindilias, Konstantinos, 2011. "Adaptive Continuous time Markov Chain Approximation Model to General Jump-Diusions," SIRE Discussion Papers 2011-53, Scottish Institute for Research in Economics (SIRE).
    4. Sarno, Lucio & Schneider, Paul & Wagner, Christian, 2010. "Properties of Foreign Exchange Risk Premia," MPRA Paper 21302, University Library of Munich, Germany.
    5. Choi, Seungmoon, 2018. "Comparison of the Korean and US Stock Markets Using Continuous-time Stochastic Volatility Models," KDI Journal of Economic Policy, Korea Development Institute (KDI), vol. 40(4), pages 1-22.
    6. Kleppe, Tore Selland & Yu, Jun & Skaug, Hans J., 2014. "Maximum likelihood estimation of partially observed diffusion models," Journal of Econometrics, Elsevier, vol. 180(1), pages 73-80.
    7. Li, Chenxu & Chen, Dachuan, 2016. "Estimating jump–diffusions using closed-form likelihood expansions," Journal of Econometrics, Elsevier, vol. 195(1), pages 51-70.
    8. Mario Cerrato & Chia Chun Lo & Konstantinos Skindilias, 2011. "Adaptive continuous time Markov chain approximation model to general jump-diffusions," Working Papers 2011_16, Business School - Economics, University of Glasgow.
    9. Varughese, Melvin M., 2013. "Parameter estimation for multivariate diffusion systems," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 417-428.
    10. Jakobsen, Nina Munkholt & Sørensen, Michael, 2019. "Estimating functions for jump–diffusions," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3282-3318.
    11. Lee, Yoon Dong & Song, Seongjoo & Lee, Eun-Kyung, 2014. "The delta expansion for the transition density of diffusion models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 694-705.
    12. Choi, Seungmoon, 2015. "Explicit form of approximate transition probability density functions of diffusion processes," Journal of Econometrics, Elsevier, vol. 187(1), pages 57-73.
    13. Filipović, Damir & Mayerhofer, Eberhard & Schneider, Paul, 2013. "Density approximations for multivariate affine jump-diffusion processes," Journal of Econometrics, Elsevier, vol. 176(2), pages 93-111.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:8:y:2010:i:4:p:450-480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/sofieea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.