IDEAS home Printed from https://ideas.repec.org/a/oup/jfinec/v20y2022i5p961-1006..html
   My bibliography  Save this article

Decoupling the Short- and Long-Term Behavior of Stochastic Volatility
[Multifactor Approximation of Rough Volatility Models]

Author

Listed:
  • Mikkel Bennedsen
  • Asger Lunde
  • Mikko S Pakkanen

Abstract

We introduce a new class of continuous-time models of the stochastic volatility of asset prices. The models can simultaneously incorporate roughness and slowly decaying autocorrelations, including proper long memory, which are two stylized facts often found in volatility data. Our prime model is based on the so-called Brownian semistationary process and we derive a number of theoretical properties of this process, relevant to volatility modeling. Applying the models to realized volatility measures covering a vast panel of assets, we find evidence consistent with the hypothesis that time series of realized measures of volatility are both rough and very persistent. Lastly, we illustrate the utility of the models in an extensive forecasting study; we find that the models proposed in this article outperform a wide array of benchmarks considerably, indicating that it pays off to exploit both roughness and persistence in volatility forecasting.

Suggested Citation

  • Mikkel Bennedsen & Asger Lunde & Mikko S Pakkanen, 2022. "Decoupling the Short- and Long-Term Behavior of Stochastic Volatility [Multifactor Approximation of Rough Volatility Models]," Journal of Financial Econometrics, Oxford University Press, vol. 20(5), pages 961-1006.
  • Handle: RePEc:oup:jfinec:v:20:y:2022:i:5:p:961-1006.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/jjfinec/nbaa049
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    2. Bolko, Anine E. & Christensen, Kim & Pakkanen, Mikko S. & Veliyev, Bezirgen, 2023. "A GMM approach to estimate the roughness of stochastic volatility," Journal of Econometrics, Elsevier, vol. 235(2), pages 745-778.
    3. Antoine Jacquier & Zan Zuric, 2023. "Random neural networks for rough volatility," Papers 2305.01035, arXiv.org.
    4. Ofelia Bonesini & Antoine Jacquier & Aitor Muguruza, 2024. "Risk premium and rough volatility," Papers 2403.11897, arXiv.org.
    5. Siu Hin Tang & Mathieu Rosenbaum & Chao Zhou, 2023. "Forecasting Volatility with Machine Learning and Rough Volatility: Example from the Crypto-Winter," Papers 2311.04727, arXiv.org, revised Feb 2024.
    6. Carsten H. Chong & Viktor Todorov, 2024. "A nonparametric test for rough volatility," Papers 2407.10659, arXiv.org.
    7. Angelini, Daniele & Bianchi, Sergio, 2023. "Nonlinear biases in the roughness of a Fractional Stochastic Regularity Model," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    8. Li, Yicun & Teng, Yuanyang, 2023. "Statistical inference in discretely observed fractional Ornstein–Uhlenbeck processes," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    9. Carsten Chong & Marc Hoffmann & Yanghui Liu & Mathieu Rosenbaum & Gr'egoire Szymanski, 2022. "Statistical inference for rough volatility: Minimax Theory," Papers 2210.01214, arXiv.org, revised Feb 2024.
    10. Carsten Chong & Marc Hoffmann & Yanghui Liu & Mathieu Rosenbaum & Gr'egoire Szymanski, 2022. "Statistical inference for rough volatility: Central limit theorems," Papers 2210.01216, arXiv.org, revised Jun 2024.
    11. Huy N. Chau & Duy Nguyen & Thai Nguyen, 2024. "On short-time behavior of implied volatility in a market model with indexes," Papers 2402.16509, arXiv.org, revised Apr 2024.
    12. Brouty, Xavier & Garcin, Matthieu, 2024. "Fractal properties, information theory, and market efficiency," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    13. Saad Mouti, 2023. "Rough volatility: evidence from range volatility estimators," Papers 2312.01426, arXiv.org, revised Sep 2024.

    More about this item

    Keywords

    : Brownian semistationary process; forecasting; high-frequency data; long memory; persistence; rough volatility; stochastic volatility;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:20:y:2022:i:5:p:961-1006.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/sofieea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.