IDEAS home Printed from https://ideas.repec.org/a/oup/ijlctc/v8y2013isuppl_1pi9-i18.html
   My bibliography  Save this article

Organic Rankine cycles in waste heat recovery: a comparative study

Author

Listed:
  • Alison Auld
  • Arganthaël Berson
  • Simon Hogg

Abstract

A theoretical study of organic Rankine cycles (ORCs) powered by three different waste heat sources is presented. The heat sources, all found in industrial processes, span a range of energy scales capable of powering ORCs from 10 kW to 10 MW. A novel method of pinch point analysis is presented, allowing variable heat input to the ORC. This study models the ORC over a range of operating conditions and with different working fluids for each heat source. Results from each source are compared to assess the influence of different heat source characteristics on optimal ORC design. Copyright , Oxford University Press.

Suggested Citation

  • Alison Auld & Arganthaël Berson & Simon Hogg, 2013. "Organic Rankine cycles in waste heat recovery: a comparative study," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 8(suppl_1), pages 9-18, April.
  • Handle: RePEc:oup:ijlctc:v:8:y:2013:i:suppl_1:p:i9-i18
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ijlct/ctt033
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ivan Korolija & Richard Greenough, 2016. "Modelling the Influence of Climate on the Performance of the Organic Rankine Cycle for Industrial Waste Heat Recovery," Energies, MDPI, vol. 9(5), pages 1-20, May.
    2. Oluleye, Gbemi & Jobson, Megan & Smith, Robin & Perry, Simon J., 2016. "Evaluating the potential of process sites for waste heat recovery," Applied Energy, Elsevier, vol. 161(C), pages 627-646.
    3. Wilailak, Supaporn & Yang, Jae-Hyeon & Heo, Chul-Gu & Kim, Kyung-Su & Bang, Se-Kyung & Seo, In-Ho & Zahid, Umer & Lee, Chul-Jin, 2021. "Thermo-economic analysis of Phosphoric Acid Fuel-Cell (PAFC) integrated with Organic Ranking Cycle (ORC)," Energy, Elsevier, vol. 220(C).
    4. Auld, Alison & Hogg, Simon & Berson, Arganthaël & Gluyas, Jon, 2014. "Power production via North Sea Hot Brines," Energy, Elsevier, vol. 78(C), pages 674-684.
    5. Wang, Y. & Barde, A. & Jin, K. & Wirz, R.E., 2020. "System performance analyses of sulfur-based thermal energy storage," Energy, Elsevier, vol. 195(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:8:y:2013:i:suppl_1:p:i9-i18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.