IDEAS home Printed from https://ideas.repec.org/a/oup/ijlctc/v1y2006i2p139-148.html
   My bibliography  Save this article

Experimental investigation of energy storage for an evacuated solar collector

Author

Listed:
  • Saffa Riffat
  • Liben Jiang
  • Jie Zhu
  • Guohui Gan

Abstract

This paper presents the results of an experimental study involving energy storage materials (paraffin wax and water) placed inside a new type of cylindrical evacuated solar collector system. The potential of this system to provide continuous hot water, even during short periods of low incident solar radiation, was investigated. Five cases, including a reference case, were studied experimentally and the performance of each was analysed. Of the materials studied, water was found to give best performance in terms of thermal storage and subsequent release of stored energy. Partial filling of the evacuated solar collector tubes with water gave greatest overall thermal efficiency for a cycle including two periods of no input energy under the test conditions employed. Copyright , Manchester University Press.

Suggested Citation

  • Saffa Riffat & Liben Jiang & Jie Zhu & Guohui Gan, 2006. "Experimental investigation of energy storage for an evacuated solar collector," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 1(2), pages 139-148, April.
  • Handle: RePEc:oup:ijlctc:v:1:y:2006:i:2:p:139-148
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ijlct/1.2.139
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    2. Aramesh, M. & Shabani, B., 2020. "On the integration of phase change materials with evacuated tube solar thermal collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    3. Chopra, K. & Tyagi, V.V. & Pandey, A.K. & Sari, Ahmet, 2018. "Global advancement on experimental and thermal analysis of evacuated tube collector with and without heat pipe systems and possible applications," Applied Energy, Elsevier, vol. 228(C), pages 351-389.
    4. Xue, H. Sheng, 2016. "Experimental investigation of a domestic solar water heater with solar collector coupled phase-change energy storage," Renewable Energy, Elsevier, vol. 86(C), pages 257-261.
    5. Evangelisti, Luca & De Lieto Vollaro, Roberto & Asdrubali, Francesco, 2019. "Latest advances on solar thermal collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    6. FeliƄski, P. & Sekret, R., 2016. "Experimental study of evacuated tube collector/storage system containing paraffin as a PCM," Energy, Elsevier, vol. 114(C), pages 1063-1072.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:1:y:2006:i:2:p:139-148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.