IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v97y2010i3p765-772.html
   My bibliography  Save this article

Strictly stationary solutions of autoregressive moving average equations

Author

Listed:
  • Peter J. Brockwell
  • Alexander Lindner

Abstract

Necessary and sufficient conditions for the existence of a strictly stationary solution of the equations defining an autoregressive moving average process driven by an independent and identically distributed noise sequence are determined. No moment assumptions on the driving noise sequence are made. Copyright 2010, Oxford University Press.

Suggested Citation

  • Peter J. Brockwell & Alexander Lindner, 2010. "Strictly stationary solutions of autoregressive moving average equations," Biometrika, Biometrika Trust, vol. 97(3), pages 765-772.
  • Handle: RePEc:oup:biomet:v:97:y:2010:i:3:p:765-772
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asq034
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Spangenberg, Felix, 2013. "Strictly stationary solutions of ARMA equations in Banach spaces," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 127-138.
    2. Tanujit Chakraborty & Ashis Kumar Chakraborty & Munmun Biswas & Sayak Banerjee & Shramana Bhattacharya, 2021. "Unemployment Rate Forecasting: A Hybrid Approach," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 183-201, January.
    3. P. Brockwell, 2014. "Recent results in the theory and applications of CARMA processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(4), pages 647-685, August.
    4. Peter J. Brockwell & Alexander Lindner, 2021. "Aspects of non‐causal and non‐invertible CARMA processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(5-6), pages 777-790, September.
    5. Ernst, Philip A. & Brown, Lawrence D. & Shepp, Larry & Wolpert, Robert L., 2017. "Stationary Gaussian Markov processes as limits of stationary autoregressive time series," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 180-186.
    6. Brandes, Dirk-Philip & Lindner, Alexander, 2014. "Non-causal strictly stationary solutions of random recurrence equations," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 113-118.
    7. Peter Brockwell & Alexander Lindner & Bernd Vollenbröker, 2012. "Strictly stationary solutions of multivariate ARMA equations with i.i.d. noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(6), pages 1089-1119, December.
    8. Yining Chen, 2015. "Semiparametric Time Series Models with Log-concave Innovations: Maximum Likelihood Estimation and its Consistency," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 1-31, March.
    9. Martin Drapatz, 2016. "Strictly stationary solutions of spatial ARMA equations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(2), pages 385-412, April.
    10. Chao Zhang & Piotr Kokoszka & Alexander Petersen, 2022. "Wasserstein autoregressive models for density time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 30-52, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:97:y:2010:i:3:p:765-772. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.