IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v97y2010i2p513-518.html
   My bibliography  Save this article

Optimal designs for the emax, log-linear and exponential models

Author

Listed:
  • H. Dette
  • C. Kiss
  • M. Bevanda
  • F. Bretz

Abstract

We derive locally D- and ED p -optimal designs for the exponential, log-linear and three-parameter emax models. For each model the locally D- and ED p -optimal designs are supported at the same set of points, while the corresponding weights are different. This indicates that for a given model, D-optimal designs are efficient for estimating the smallest dose that achieves 100p% of the maximum effect in the observed dose range. Conversely, ED p -optimal designs also yield good D-efficiencies. We illustrate the results using several examples and demonstrate that locally D- and ED p -optimal designs for the emax, log-linear and exponential models are relatively robust with respect to misspecification of the model parameters. Copyright 2010, Oxford University Press.

Suggested Citation

  • H. Dette & C. Kiss & M. Bevanda & F. Bretz, 2010. "Optimal designs for the emax, log-linear and exponential models," Biometrika, Biometrika Trust, vol. 97(2), pages 513-518.
  • Handle: RePEc:oup:biomet:v:97:y:2010:i:2:p:513-518
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asq020
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Jun & Meng, Xiran & Wang, Yaping, 2023. "Optimal designs for semi-parametric dose-response models under random contamination," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    2. Younan Chen & Michael Fries & Sergei Leonov, 2023. "Longitudinal model for a dose-finding study for a rare disease treatment," Statistical Papers, Springer, vol. 64(4), pages 1343-1360, August.
    3. Yu, Jun & Kong, Xiangshun & Ai, Mingyao & Tsui, Kwok Leung, 2018. "Optimal designs for dose–response models with linear effects of covariates," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 217-228.
    4. Masoudi, Ehsan & Holling, Heinz & Wong, Weng Kee, 2017. "Application of imperialist competitive algorithm to find minimax and standardized maximin optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 330-345.
    5. Kira Alhorn & Holger Dette & Kirsten Schorning, 2021. "Optimal Designs for Model Averaging in non-nested Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 745-778, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:97:y:2010:i:2:p:513-518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.