IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v94y2007i1p135-152.html
   My bibliography  Save this article

Extending conventional priors for testing general hypotheses in linear models

Author

Listed:
  • M.J. Bayarri
  • Gonzalo García-Donato

Abstract

We consider that observations come from a general normal linear model and that it is desirable to test a simplifying null hypothesis about the parameters. We approach this problem from an objective Bayesian, model-selection perspective. Crucial ingredients for this approach are 'proper objective priors' to be used for deriving the Bayes factors. Jeffreys-Zellner-Siow priors have good properties for testing null hypotheses defined by specific values of the parameters in full-rank linear models. We extend these priors to deal with general hypotheses in general linear models, not necessarily of full rank. The resulting priors, which we call 'conventional priors', are expressed as a generalization of recently introduced 'partially informative distributions'. The corresponding Bayes factors are fully automatic, easily computed and very reasonable. The methodology is illustrated for the change-point problem and the equality of treatments effects problem. We compare the conventional priors derived for these problems with other objective Bayesian proposals like the intrinsic priors. It is concluded that both priors behave similarly although interesting subtle differences arise. We adapt the conventional priors to deal with nonnested model selection as well as multiple-model comparison. Finally, we briefly address a generalization of conventional priors to nonnormal scenarios. Copyright 2007, Oxford University Press.

Suggested Citation

  • M.J. Bayarri & Gonzalo García-Donato, 2007. "Extending conventional priors for testing general hypotheses in linear models," Biometrika, Biometrika Trust, vol. 94(1), pages 135-152.
  • Handle: RePEc:oup:biomet:v:94:y:2007:i:1:p:135-152
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asm014
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James Berger & M. J. Bayarri & L. R. Pericchi, 2014. "The Effective Sample Size," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 197-217, June.
    2. C. Armero & G. García‐Donato & A. López‐Quílez, 2010. "Bayesian methods in cost–effectiveness studies: objectivity, computation and other relevant aspects," Health Economics, John Wiley & Sons, Ltd., vol. 19(6), pages 629-643, June.
    3. Diego Battagliese & Clara Grazian & Brunero Liseo & Cristiano Villa, 2023. "Copula modelling with penalized complexity priors: the bivariate case," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 542-565, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:94:y:2007:i:1:p:135-152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.