Auxiliary mixture sampling for parameter-driven models of time series of counts with applications to state space modelling
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tamás Krisztin & Philipp Piribauer, 2021.
"Modelling European regional FDI flows using a Bayesian spatial Poisson interaction model,"
The Annals of Regional Science, Springer;Western Regional Science Association, vol. 67(3), pages 593-616, December.
- Tam'as Krisztin & Philipp Piribauer, 2020. "Modeling European regional FDI flows using a Bayesian spatial Poisson interaction model," Papers 2010.14856, arXiv.org.
- Riccardo (Jack) Lucchetti & Luca Pedini, 2020. "ParMA: Parallelised Bayesian Model Averaging for Generalised Linear Models," Working Papers 2020:28, Department of Economics, University of Venice "Ca' Foscari".
- Samson B. Adebayo & Ludwig Fahrmeir & Christian Seiler & Christian Heumann, 2011.
"Geoadditive Latent Variable Modeling of Count Data on Multiple Sexual Partnering in Nigeria,"
Biometrics, The International Biometric Society, vol. 67(2), pages 620-628, June.
- Adebayo, Samson B. & Fahrmeir, Ludwig & Seiler, Christian, 2009. "Geoadditive latent variable modelling of count data on multiple sexual partnering in Nigeria," MPRA Paper 27839, University Library of Munich, Germany.
- McCausland, William J. & Miller, Shirley & Pelletier, Denis, 2011. "Simulation smoothing for state-space models: A computational efficiency analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 199-212, January.
- Rutger Jan Lange, 2020. "Bellman filtering for state-space models," Tinbergen Institute Discussion Papers 20-052/III, Tinbergen Institute, revised 19 May 2021.
- Chan, Joshua & Strachan, Rodney, 2012.
"Estimation in Non-Linear Non-Gaussian State Space Models with Precision-Based Methods,"
MPRA Paper
39360, University Library of Munich, Germany.
- Joshua Chan & Rodney Strachan, 2012. "Estimation in Non-Linear Non-Gaussian State Space Models with Precision-Based Methods," CAMA Working Papers 2012-13, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Patrick T. Brandt & Todd Sandler, 2010. "What Do Transnational Terrorists Target? Has It Changed? Are We Safer?," Journal of Conflict Resolution, Peace Science Society (International), vol. 54(2), pages 214-236, April.
- Frühwirth-Schnatter, Sylvia & Wagner, Helga, 2008. "Marginal likelihoods for non-Gaussian models using auxiliary mixture sampling," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4608-4624, June.
- Lange, Rutger-Jan, 2024. "Bellman filtering and smoothing for state–space models," Journal of Econometrics, Elsevier, vol. 238(2).
- Ralph D. Snyder & Gael M. Martin & Phillip Gould & Paul D. Feigin, 2007. "An Assessment of Alternative State Space Models for Count Time Series," Monash Econometrics and Business Statistics Working Papers 4/07, Monash University, Department of Econometrics and Business Statistics.
- Tsuyoshi Kunihama & Yasuhiro Omori & Zhengjun Zhang, 2010. "Bayesian Estimation and Particle Filter for Max-Stable Processes," CIRJE F-Series CIRJE-F-757, CIRJE, Faculty of Economics, University of Tokyo.
- István Barra & Agnieszka Borowska & Siem Jan Koopman, 2018.
"Bayesian Dynamic Modeling of High-Frequency Integer Price Changes,"
Journal of Financial Econometrics, Oxford University Press, vol. 16(3), pages 384-424.
- Istvan Barra & Siem Jan Koopman & Agnieszka Borowska, 2016. "Bayesian Dynamic Modeling of High-Frequency Integer Price Changes," Tinbergen Institute Discussion Papers 16-028/III, Tinbergen Institute, revised 16 Feb 2018.
- Nakajima, Jouchi & Kunihama, Tsuyoshi & Omori, Yasuhiro & Frühwirth-Schnatter, Sylvia, 2012.
"Generalized extreme value distribution with time-dependence using the AR and MA models in state space form,"
Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3241-3259.
- Jouchi Nakajima & Tsuyoshi Kunihama & Yasuhiro Omori & Sylvia Fruhwirth-Schnatter, 2009. "Generalized extreme value distribution with time-dependence using the AR and MA models in state space form," CIRJE F-Series CIRJE-F-689, CIRJE, Faculty of Economics, University of Tokyo.
- Jouchi Nakajima & Tsuyoshi Kunihama & Yasuhiro Omori & Sylvia Fruwirth-Scnatter, 2009. "Generalized Extreme Value Distribution with Time-Dependence Using the AR and MA Models in State Space Form," IMES Discussion Paper Series 09-E-32, Institute for Monetary and Economic Studies, Bank of Japan.
- Jouchi Nakajima & Tsuyoshi Kunihama & Yasuhiro Omori & Sylvia Fruhwirth-Schnatter, 2011. "Generalized Extreme Value Distribution with Time-Dependence Using the AR and MA Models in State Space Form," CIRJE F-Series CIRJE-F-782, CIRJE, Faculty of Economics, University of Tokyo.
- Jouchi Nakajima & Tsuyoshi Kunihama & Yasuhiro Omori, 2017.
"Bayesian modeling of dynamic extreme values: extension of generalized extreme value distributions with latent stochastic processes,"
Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(7), pages 1248-1268, May.
- Jouchi Nakajima & Tsuyoshi Kunihama & Yasuhiro Omori, 2015. "Bayesian Modeling of Dynamic Extreme Values: Extension of Generalized Extreme Value Distributions with Latent Stochastic Processes ," CIRJE F-Series CIRJE-F-953, CIRJE, Faculty of Economics, University of Tokyo.
- Jouchi Nakajima & Tsuyoshi Kunihama & Yasuhiro Omori, 2015. "Bayesian Modeling of Dynamic Extreme Values: Extension of Generalized Extreme Value Distributions with Latent Stochastic Processes ," CIRJE F-Series CIRJE-F-952, CIRJE, Faculty of Economics, University of Tokyo.
- Jouchi Nakajima & Tsuyoshi Kunihama & Yasuhiro Omori, 2015. "Bayesian Modeling of Dynamic Extreme Values: Extension of Generalized Extreme Value Distributions with Latent Stochastic Processes ," CIRJE F-Series CIRJE-F-952, CIRJE, Faculty of Economics, University of Tokyo.
- Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2020. "On an integer-valued stochastic intensity model for time series of counts," MPRA Paper 105406, University Library of Munich, Germany.
- Kleppe, Tore Selland & Liesenfeld, Roman, 2011. "Efficient high-dimensional importance sampling in mixture frameworks," Economics Working Papers 2011-11, Christian-Albrechts-University of Kiel, Department of Economics.
- Joshua C.C. Chan & Rodney W. Strachan, 2023.
"Bayesian State Space Models In Macroeconometrics,"
Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 58-75, February.
- Joshua C.C. Chan & Rodney W. Strachan, 2020. "Bayesian state space models in macroeconometrics," CAMA Working Papers 2020-90, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Kleppe, Tore Selland & Liesenfeld, Roman, 2014. "Efficient importance sampling in mixture frameworks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 449-463.
- Tsuyoshi Kunihama & Yasuhiro Omori & Zhengjun Zhang, 2012.
"Efficient estimation and particle filter for max‐stable processes,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 33(1), pages 61-80, January.
- Tsuyoshi Kunihama & Yasuhiro Omori & Zhengjun Zhang, 2011. "Efficient estimation and particle filter for max-stable processes," CIRJE F-Series CIRJE-F-791, CIRJE, Faculty of Economics, University of Tokyo.
- Frühwirth-Schnatter, Sylvia & Wagner, Helga, 2010. "Stochastic model specification search for Gaussian and partial non-Gaussian state space models," Journal of Econometrics, Elsevier, vol. 154(1), pages 85-100, January.
- Mark David Nieman, 2016. "Moments in time: Temporal patterns in the effect of democracy and trade on conflict," Conflict Management and Peace Science, Peace Science Society (International), vol. 33(3), pages 273-293, July.
- Feigin, Paul D. & Gould, Phillip & Martin, Gael M. & Snyder, Ralph D., 2008. "Feasible parameter regions for alternative discrete state space models," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2963-2970, December.
- McCausland, William J., 2012. "The HESSIAN method: Highly efficient simulation smoothing, in a nutshell," Journal of Econometrics, Elsevier, vol. 168(2), pages 189-206.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:93:y:2006:i:4:p:827-841. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.