IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v92y2005i4p831-846.html
   My bibliography  Save this article

Model-assisted estimation for complex surveys using penalised splines

Author

Listed:
  • F. J. Breidt
  • G. Claeskens
  • J. D. Opsomer

Abstract

Estimation of finite population totals in the presence of auxiliary information is considered. A class of estimators based on penalised spline regression is proposed. These estimators are weighted linear combinations of sample observations, with weights calibrated to known control totals. They allow straightforward extensions to multiple auxiliary variables and to complex designs. Under standard design conditions, the estimators are design consistent and asymptotically normal, and they admit consistent variance estimation using familiar design-based methods. Data-driven penalty selection is considered in the context of unequal probability sampling designs. Simulation experiments show that the estimators are more efficient than parametric regression estimators when the parametric model is incorrectly specified, while being approximately as efficient when the parametric specification is correct. An example using Forest Health Monitoring survey data from the U.S. Forest Service demonstrates the applicability of the methodology in the context of a two-phase survey with multiple auxiliary variables. Copyright 2005, Oxford University Press.

Suggested Citation

  • F. J. Breidt & G. Claeskens & J. D. Opsomer, 2005. "Model-assisted estimation for complex surveys using penalised splines," Biometrika, Biometrika Trust, vol. 92(4), pages 831-846, December.
  • Handle: RePEc:oup:biomet:v:92:y:2005:i:4:p:831-846
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/92.4.831
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Li & Wang, Suojin, 2011. "Nonparametric additive model-assisted estimation for survey data," Journal of Multivariate Analysis, Elsevier, vol. 102(7), pages 1126-1140, August.
    2. Sayed A. Mostafa & Ibrahim A. Ahmad, 2019. "Kernel density estimation from complex surveys in the presence of complete auxiliary information," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(3), pages 295-338, April.
    3. Carl-Erik Särndal & Imbi Traat & Kaur Lumiste, 2018. "Interaction Between Data Collection And Estimation Phases In Surveys With Nonresponse," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 183-200, June.
    4. Giorgio E. Montanari & M. Giovanna Ranalli, 2006. "A Mixed Model-assisted Regression Estimator that Uses Variables Employed at the Design Stage," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(2), pages 139-149, August.
    5. Julian Wagner & Ralf Münnich & Joachim Hill & Johannes Stoffels & Thomas Udelhoven, 2017. "Non‐parametric small area models using shape‐constrained penalized B‐splines," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 1089-1109, October.
    6. Liu Bin & Yu Cindy Long & Price Michael Joseph & Jiang Yan, 2018. "Generalized Method of Moments Estimators for Multiple Treatment Effects Using Observational Data from Complex Surveys," Journal of Official Statistics, Sciendo, vol. 34(3), pages 753-784, September.
    7. Sumanta Adhya & Banerjee, Tathagata & Chattopadhyay, Gouranga, 2015. "A Note on Estimating Variance of Finite Population Distribution Function," IIMA Working Papers WP2015-08-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    8. Giorgio Montanari & M. Ranalli, 2006. "A Mixed Model-assisted Regression Estimator that Uses Variables Employed at the Design Stage," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(2), pages 139-149, August.
    9. Särndal Carl-Erik & Traat Imbi & Lumiste Kaur, 2018. "Interaction Between Data Collection And Estimation Phases In Surveys With Nonresponse," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 183-200, June.
    10. Barranco-Chamorro, I. & Jiménez-Gamero, M.D. & Moreno-Rebollo, J.L. & Muñoz-Pichardo, J.M., 2012. "Case-deletion type diagnostics for calibration estimators in survey sampling," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2219-2236.
    11. Sumanta Adhya & Tathagata Banerjee & Gaurangadeb Chattopadhyay, 2012. "Inference on finite population categorical response: nonparametric regression-based predictive approach," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(1), pages 69-98, January.
    12. Torsten Harms & Pierre Duchesne, 2010. "On kernel nonparametric regression designed for complex survey data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 72(1), pages 111-138, July.
    13. Sanjoy Sinha & Abdus Sattar, 2015. "Inference in semi-parametric spline mixed models for longitudinal data," METRON, Springer;Sapienza Università di Roma, vol. 73(3), pages 377-395, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:92:y:2005:i:4:p:831-846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.