IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v180y2017i4p1089-1109.html
   My bibliography  Save this article

Non‐parametric small area models using shape‐constrained penalized B‐splines

Author

Listed:
  • Julian Wagner
  • Ralf Münnich
  • Joachim Hill
  • Johannes Stoffels
  • Thomas Udelhoven

Abstract

For the estimation of spruce timber reserves in individual forest districts of the German federal state Rhineland‐Palatinate, small area methods are applied. A model using stock values of the state forest inventory and a canopy height model derived by airborne laser scanning is used to provide adequate estimates. Since the interaction between the variables is non‐linear and must fulfil further constraints, a new spline‐based small area estimation method is proposed, formulated as a quadratic programming problem. This method enables providing realistic estimates via including specialized constraints which are especially important in practice as well as more stable estimates. The applicability of the new method and the related mean‐squared‐error estimators is shown in a simulation study. Further, spruce timber reserves in Rhineland‐Palatinate are estimated by using the new approach compared with already existing methods.

Suggested Citation

  • Julian Wagner & Ralf Münnich & Joachim Hill & Johannes Stoffels & Thomas Udelhoven, 2017. "Non‐parametric small area models using shape‐constrained penalized B‐splines," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 1089-1109, October.
  • Handle: RePEc:bla:jorssa:v:180:y:2017:i:4:p:1089-1109
    DOI: 10.1111/rssa.12295
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12295
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12295?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Opsomer, Jean D. & Breidt, F. Jay & Moisen, Gretchen G. & Kauermann, Goran, 2007. "Model-Assisted Estimation of Forest Resources With Generalized Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 400-409, June.
    2. Ugarte, M.D. & Goicoa, T. & Militino, A.F. & Durbán, M., 2009. "Spline smoothing in small area trend estimation and forecasting," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3616-3629, August.
    3. McDonald, G. T. & Lane, M. B., 2004. "Converging global indicators for sustainable forest management," Forest Policy and Economics, Elsevier, vol. 6(1), pages 63-70, January.
    4. J. D. Opsomer & G. Claeskens & M. G. Ranalli & G. Kauermann & F. J. Breidt, 2008. "Non‐parametric small area estimation using penalized spline regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 265-286, February.
    5. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, October.
    6. F. J. Breidt & G. Claeskens & J. D. Opsomer, 2005. "Model-assisted estimation for complex surveys using penalised splines," Biometrika, Biometrika Trust, vol. 92(4), pages 831-846, December.
    7. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Pablo Burgard & Patricia Dörr & Ralf Münnich, 2020. "Monte-Carlo Simulation Studies in Survey Statistics – An Appraisal," Research Papers in Economics 2020-04, University of Trier, Department of Economics.
    2. María José Lombardía & Esther López-Vizcaíno & Cristina Rueda, 2021. "Selection model for domains across time: application to labour force survey by economic activities," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 228-254, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salvati, Nicola & Chandra, Hukum & Giovanna Ranalli, M. & Chambers, Ray, 2010. "Small area estimation using a nonparametric model-based direct estimator," Computational Statistics & Data Analysis, Elsevier, vol. 54(9), pages 2159-2171, September.
    2. Sumanta Adhya & Tathagata Banerjee & Gaurangadeb Chattopadhyay, 2012. "Inference on finite population categorical response: nonparametric regression-based predictive approach," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(1), pages 69-98, January.
    3. Shonosuke Sugasawa & Tatsuya Kubokawa & J. N. K. Rao, 2018. "Small area estimation via unmatched sampling and linking models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 407-427, June.
    4. Ralf Münnich & Julian Wagner & Joachim Hill & Johannes Stoffels & Henning Buddenbaum & Thomas Udelhoven, 2016. "Schätzung von Holzvorräten unter Verwendung von Fernerkundungsdaten [Estimation of timber reserves using remote sensing data]," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 10(2), pages 95-112, October.
    5. Tang, Niansheng & Wu, Ying & Chen, Dan, 2018. "Semiparametric Bayesian analysis of transformation linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 225-240.
    6. Chandra, Hukum & Salvati, Nicola & Chambers, Ray, 2018. "Small area estimation under a spatially non-linear model," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 19-38.
    7. Lin, Fangzheng & Tang, Yanlin & Zhu, Huichen & Zhu, Zhongyi, 2022. "Spatially clustered varying coefficient model," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    8. Ugarte, M.D. & Goicoa, T. & Militino, A.F. & Durbán, M., 2009. "Spline smoothing in small area trend estimation and forecasting," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3616-3629, August.
    9. Rong Chen & Hua Liang & Jing Wang, 2011. "Determination of linear components in additive models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 367-383.
    10. Hongjian Yu & Yueyan Wang & Jean Opsomer & Pan Wang & Ninez A. Ponce, 2018. "A design‐based approach to small area estimation using a semiparametric generalized linear mixed model," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1151-1167, October.
    11. Chiara Bocci & Emilia Rocco, 2014. "Estimates for geographical domains through geoadditive models in presence of incomplete geographical information," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 283-305, June.
    12. Sumanta Adhya & Banerjee, Tathagata & Chattopadhyay, Gouranga, 2015. "A Note on Estimating Variance of Finite Population Distribution Function," IIMA Working Papers WP2015-08-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    13. Zanin, Luca & Marra, Giampiero, 2012. "Assessing the functional relationship between CO2 emissions and economic development using an additive mixed model approach," Economic Modelling, Elsevier, vol. 29(4), pages 1328-1337.
    14. Ni, Xiao & Zhang, Hao Helen & Zhang, Daowen, 2009. "Automatic model selection for partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2100-2111, October.
    15. Proietti, Tommaso, 2010. "Trend Estimation," MPRA Paper 21607, University Library of Munich, Germany.
    16. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    17. Javier Parada Gómez Urquiza & Alejandro López-Feldman, 2013. "Poverty dynamics in rural Mexico: What does the future hold?," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(2), pages 55-74, November.
    18. Bethany Everett & David Rehkopf & Richard Rogers, 2013. "The Nonlinear Relationship Between Education and Mortality: An Examination of Cohort, Race/Ethnic, and Gender Differences," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 32(6), pages 893-917, December.
    19. Tatiyana V. Apanasovich & David Ruppert & Joanne R. Lupton & Natasa Popovic & Nancy D. Turner & Robert S. Chapkin & Raymond J. Carroll, 2008. "Aberrant Crypt Foci and Semiparametric Modeling of Correlated Binary Data," Biometrics, The International Biometric Society, vol. 64(2), pages 490-500, June.
    20. Eduardo L. Montoya & Wendy Meiring, 2016. "An F-type test for detecting departure from monotonicity in a functional linear model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 322-337, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:180:y:2017:i:4:p:1089-1109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.