IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v92y2005i2p465-476.html
   My bibliography  Save this article

Saddlepoint approximations for the Bingham and Fisher–Bingham normalising constants

Author

Listed:
  • A. Kume
  • Andrew T. A. Wood

Abstract

The Fisher--Bingham distribution is obtained when a multivariate normal random vector is conditioned to have unit length. Its normalising constant can be expressed as an elementary function multiplied by the density, evaluated at 1, of a linear combination of independent noncentral χ-sub-1-super-2 random variables. Hence we may approximate the normalising constant by applying a saddlepoint approximation to this density. Three such approximations, implementation of each of which is straightforward, are investigated: the first-order saddlepoint density approximation, the second-order saddlepoint density approximation and a variant of the second-order approximation which has proved slightly more accurate than the other two. The numerical and theoretical results we present showthat this approach provides highly accurate approximations in a broad spectrum of cases. Copyright 2005, Oxford University Press.

Suggested Citation

  • A. Kume & Andrew T. A. Wood, 2005. "Saddlepoint approximations for the Bingham and Fisher–Bingham normalising constants," Biometrika, Biometrika Trust, vol. 92(2), pages 465-476, June.
  • Handle: RePEc:oup:biomet:v:92:y:2005:i:2:p:465-476
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/92.2.465
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ley, Christophe & Verdebout, Thomas, 2017. "Skew-rotationally-symmetric distributions and related efficient inferential procedures," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 67-81.
    2. Tamio Koyama & Akimichi Takemura, 2016. "Holonomic gradient method for distribution function of a weighted sum of noncentral chi-square random variables," Computational Statistics, Springer, vol. 31(4), pages 1645-1659, December.
    3. Kume, A. & Wood, Andrew T.A., 2007. "On the derivatives of the normalising constant of the Bingham distribution," Statistics & Probability Letters, Elsevier, vol. 77(8), pages 832-837, April.
    4. Christophe Ley & Thomas Verdebout, 2014. "Skew-rotsymmetric Distributions on Unit Spheres and Related Efficient Inferential Proceedures," Working Papers ECARES ECARES 2014-46, ULB -- Universite Libre de Bruxelles.
    5. Jean-Luc Dortet-Bernadet & Nicolas Wicker, 2018. "A Note on Inverse Stereographic Projection of Elliptical Distributions," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 138-151, February.
    6. Bee, Marco & Benedetti, Roberto & Espa, Giuseppe, 2017. "Approximate maximum likelihood estimation of the Bingham distribution," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 84-96.
    7. Takasu, Yuya & Yano, Keisuke & Komaki, Fumiyasu, 2018. "Scoring rules for statistical models on spheres," Statistics & Probability Letters, Elsevier, vol. 138(C), pages 111-115.
    8. Ian L. Dryden, 2014. "Comment on Geodesic Monte Carlo on Embedded Manifolds by Byrne and Girolami," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 8-9, March.
    9. Marco Bee & Roberto Benedetti & Giuseppe Espa, 2015. "Approximate likelihood inference for the Bingham distribution," DEM Working Papers 2015/02, Department of Economics and Management.
    10. Sei, Tomonari & Shibata, Hiroki & Takemura, Akimichi & Ohara, Katsuyoshi & Takayama, Nobuki, 2013. "Properties and applications of Fisher distribution on the rotation group," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 440-455.
    11. Kume, A. & Walker, S.G., 2014. "On the Bingham distribution with large dimension," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 345-352.
    12. Tamio Koyama & Hiromasa Nakayama & Kenta Nishiyama & Nobuki Takayama, 2014. "Holonomic gradient descent for the Fisher–Bingham distribution on the $$d$$ d -dimensional sphere," Computational Statistics, Springer, vol. 29(3), pages 661-683, June.
    13. Tianlu Yuan, 2021. "The 8-parameter Fisher–Bingham distribution on the sphere," Computational Statistics, Springer, vol. 36(1), pages 409-420, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:92:y:2005:i:2:p:465-476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.