IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v77y2007i8p832-837.html
   My bibliography  Save this article

On the derivatives of the normalising constant of the Bingham distribution

Author

Listed:
  • Kume, A.
  • Wood, Andrew T.A.

Abstract

It is shown that an arbitrary joint partial derivative of the Bingham normalising constant, expressed in standard form, is proportional to the normalising constant of a Bingham distribution of higher dimension. Two consequences of this result are noted.

Suggested Citation

  • Kume, A. & Wood, Andrew T.A., 2007. "On the derivatives of the normalising constant of the Bingham distribution," Statistics & Probability Letters, Elsevier, vol. 77(8), pages 832-837, April.
  • Handle: RePEc:eee:stapro:v:77:y:2007:i:8:p:832-837
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(07)00017-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Kume & Andrew T. A. Wood, 2005. "Saddlepoint approximations for the Bingham and Fisher–Bingham normalising constants," Biometrika, Biometrika Trust, vol. 92(2), pages 465-476, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valdevino Félix de Lima, Wenia & David Costa do Nascimento, Abraão & José Amorim do Amaral, Getúlio, 2021. "Distance-based tests for planar shape," Journal of Multivariate Analysis, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ian L. Dryden, 2014. "Comment on Geodesic Monte Carlo on Embedded Manifolds by Byrne and Girolami," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 8-9, March.
    2. Christophe Ley & Thomas Verdebout, 2014. "Skew-rotsymmetric Distributions on Unit Spheres and Related Efficient Inferential Proceedures," Working Papers ECARES ECARES 2014-46, ULB -- Universite Libre de Bruxelles.
    3. Jean-Luc Dortet-Bernadet & Nicolas Wicker, 2018. "A Note on Inverse Stereographic Projection of Elliptical Distributions," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 138-151, February.
    4. Kume, A. & Walker, S.G., 2014. "On the Bingham distribution with large dimension," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 345-352.
    5. Tamio Koyama & Akimichi Takemura, 2016. "Holonomic gradient method for distribution function of a weighted sum of noncentral chi-square random variables," Computational Statistics, Springer, vol. 31(4), pages 1645-1659, December.
    6. Takasu, Yuya & Yano, Keisuke & Komaki, Fumiyasu, 2018. "Scoring rules for statistical models on spheres," Statistics & Probability Letters, Elsevier, vol. 138(C), pages 111-115.
    7. Marco Bee & Roberto Benedetti & Giuseppe Espa, 2015. "Approximate likelihood inference for the Bingham distribution," DEM Working Papers 2015/02, Department of Economics and Management.
    8. Tamio Koyama & Hiromasa Nakayama & Kenta Nishiyama & Nobuki Takayama, 2014. "Holonomic gradient descent for the Fisher–Bingham distribution on the $$d$$ d -dimensional sphere," Computational Statistics, Springer, vol. 29(3), pages 661-683, June.
    9. Tianlu Yuan, 2021. "The 8-parameter Fisher–Bingham distribution on the sphere," Computational Statistics, Springer, vol. 36(1), pages 409-420, March.
    10. Bee, Marco & Benedetti, Roberto & Espa, Giuseppe, 2017. "Approximate maximum likelihood estimation of the Bingham distribution," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 84-96.
    11. Christian Aßmann & Jens Boysen-Hogrefe & Markus Pape, 2024. "Post-processing for Bayesian analysis of reduced rank regression models with orthonormality restrictions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(3), pages 577-609, September.
    12. Ley, Christophe & Verdebout, Thomas, 2017. "Skew-rotationally-symmetric distributions and related efficient inferential procedures," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 67-81.
    13. Sei, Tomonari & Shibata, Hiroki & Takemura, Akimichi & Ohara, Katsuyoshi & Takayama, Nobuki, 2013. "Properties and applications of Fisher distribution on the rotation group," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 440-455.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:77:y:2007:i:8:p:832-837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.