IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v91y2004i1p45-63.html
   My bibliography  Save this article

Bayesian criterion based model assessment for categorical data

Author

Listed:
  • Ming-Hui Chen

Abstract

We propose a general Bayesian criterion for model assessment for categorical data called the weighted L measure, which is constructed from the posterior predictive distribution of the data. The measure is based on weighting the observations according to the sampling variance of their future response vector. The weight component in the weighted L measure plays the role of a penalty term in the criterion, in which a greater weight assigned to covariate values implies a greater penalty term on the dimension of the model. A detailed justification is provided for such a weighting procedure and several theoretical properties of the weighted L measure are presented for a wide variety of discrete data models. For these models, we examine properties of the weighted L measure, and show that it can perform better than the unweighted L measure in a variety of settings. In addition, we show that the weighted quadratic loss L measure is more attractive than the unweighted L measure and the deviance loss L measure for categorical data. Moreover, a calibration for the weighted L measure is motivated and proposed, which allows us to compare formally the L measure values of competing models. A detailed simulation study is presented to examine the performance of the weighted L measure, and it is compared to other established model-selection methods. Finally, the method is applied to a real dataset using a bivariate ordinal response model. Copyright Biometrika Trust 2004, Oxford University Press.

Suggested Citation

  • Ming-Hui Chen, 2004. "Bayesian criterion based model assessment for categorical data," Biometrika, Biometrika Trust, vol. 91(1), pages 45-63, March.
  • Handle: RePEc:oup:biomet:v:91:y:2004:i:1:p:45-63
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Xin-Yuan & Chen, Fei & Lu, Zhao-Hua, 2013. "A Bayesian semiparametric dynamic two-level structural equation model for analyzing non-normal longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 87-108.
    2. Lan Huang & Ming-Hui Chen & Joseph G. Ibrahim, 2005. "Bayesian Analysis for Generalized Linear Models with Nonignorably Missing Covariates," Biometrics, The International Biometric Society, vol. 61(3), pages 767-780, September.
    3. Dipankar Bandyopadhyay & Antonio Canale, 2016. "Non-parametric spatial models for clustered ordered periodontal data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(4), pages 619-640, August.
    4. Arnab Kumar Maity & Sanjib Basu & Santu Ghosh, 2021. "Bayesian criterion‐based variable selection," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 835-857, August.
    5. Li, Yun-Xian & Kano, Yutaka & Pan, Jun-Hao & Song, Xin-Yuan, 2012. "A criterion-based model comparison statistic for structural equation models with heterogeneous data," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 92-107.
    6. Michael J. Daniels & Arkendu S. Chatterjee & Chenguang Wang, 2012. "Bayesian Model Selection for Incomplete Data Using the Posterior Predictive Distribution," Biometrics, The International Biometric Society, vol. 68(4), pages 1055-1063, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:91:y:2004:i:1:p:45-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.