IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v90y2003i1p157-169.html
   My bibliography  Save this article

Random effects Cox models: A Poisson modelling approach

Author

Listed:
  • Renjun Ma

Abstract

We propose a Poisson modelling approach to nested random effects Cox proportional hazards models. An important feature of this approach is that the principal results depend only on the first and second moments of the unobserved random effects. The orthodox best linear unbiased predictor approach to random effects Poisson modelling techniques enables us to justify appropriate consistency and optimality. The explicit expressions for the random effects given by our approach facilitate incorporation of a relatively large number of random effects. The use of the proposed methods is illustrated through the reanalysis of data from a large-scale cohort study of particulate air pollution and mortality previously reported by Pope et al. (1995). Copyright Biometrika Trust 2003, Oxford University Press.

Suggested Citation

  • Renjun Ma, 2003. "Random effects Cox models: A Poisson modelling approach," Biometrika, Biometrika Trust, vol. 90(1), pages 157-169, March.
  • Handle: RePEc:oup:biomet:v:90:y:2003:i:1:p:157-169
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gifford, Elizabeth J. & Wells, Rebecca S. & Bai, Yu & Malone, Patrick S., 2015. "Is implementation fidelity associated with improved access to care in a School-based Child and Family Team model?," Evaluation and Program Planning, Elsevier, vol. 49(C), pages 41-49.
    2. Shih, Joanna H. & Lu, Shou-En, 2009. "Semiparametric estimation of a nested random effects model for the analysis of multi-level clustered failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3864-3871, September.
    3. Joanna H. Shih & Shou-En Lu, 2007. "Analysis of Failure Time Data with Multilevel Clustering, with Application to the Child Vitamin A Intervention Trial in Nepal," Biometrics, The International Biometric Society, vol. 63(3), pages 673-680, September.
    4. Tiago R. Pellegrini & M. Tariqul Hasan & Renjun Ma, 2017. "Modeling of paired zero-inflated continuous data without breaking down paired designs," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2427-2443, October.
    5. Mirza Nazmul Hasan & Roel Braekers, 2021. "Estimation of the association parameters in hierarchically clustered survival data by nested Archimedean copula functions," Computational Statistics, Springer, vol. 36(4), pages 2755-2787, December.
    6. M. Tariqul Hasan & Gary Sneddon & Renjun Ma, 2012. "Regression analysis of zero-inflated time-series counts: application to air pollution related emergency room visit data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(3), pages 467-476, June.
    7. Courgeau, Daniel, 2007. "Multilevel synthesis. From the group to the individual," MPRA Paper 43189, University Library of Munich, Germany.
    8. Ying Hung & Li‐Hsiang Lin & C. F. Jeff Wu, 2022. "Varying coefficient frailty models with applications in single molecular experiments," Biometrics, The International Biometric Society, vol. 78(2), pages 474-486, June.
    9. Abrahantes, Jose Cortinas & Legrand, Catherine & Burzykowski, Tomasz & Janssen, Paul & Ducrocq, Vincent & Duchateau, Luc, 2007. "Comparison of different estimation procedures for proportional hazards model with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3913-3930, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:90:y:2003:i:1:p:157-169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.