IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v63y2007i3p673-680.html
   My bibliography  Save this article

Analysis of Failure Time Data with Multilevel Clustering, with Application to the Child Vitamin A Intervention Trial in Nepal

Author

Listed:
  • Joanna H. Shih
  • Shou-En Lu

Abstract

No abstract is available for this item.

Suggested Citation

  • Joanna H. Shih & Shou-En Lu, 2007. "Analysis of Failure Time Data with Multilevel Clustering, with Application to the Child Vitamin A Intervention Trial in Nepal," Biometrics, The International Biometric Society, vol. 63(3), pages 673-680, September.
  • Handle: RePEc:bla:biomet:v:63:y:2007:i:3:p:673-680
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2007.00756.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Renjun Ma, 2003. "Random effects Cox models: A Poisson modelling approach," Biometrika, Biometrika Trust, vol. 90(1), pages 157-169, March.
    2. Joe, H., 1993. "Parametric Families of Multivariate Distributions with Given Margins," Journal of Multivariate Analysis, Elsevier, vol. 46(2), pages 262-282, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shih, Joanna H. & Lu, Shou-En, 2009. "Semiparametric estimation of a nested random effects model for the analysis of multi-level clustered failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3864-3871, September.
    2. Mirza Nazmul Hasan & Roel Braekers, 2021. "Estimation of the association parameters in hierarchically clustered survival data by nested Archimedean copula functions," Computational Statistics, Springer, vol. 36(4), pages 2755-2787, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shih, Joanna H. & Lu, Shou-En, 2009. "Semiparametric estimation of a nested random effects model for the analysis of multi-level clustered failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3864-3871, September.
    2. Mirza Nazmul Hasan & Roel Braekers, 2021. "Estimation of the association parameters in hierarchically clustered survival data by nested Archimedean copula functions," Computational Statistics, Springer, vol. 36(4), pages 2755-2787, December.
    3. Bedoui, Rihab & Braiek, Sana & Guesmi, Khaled & Chevallier, Julien, 2019. "On the conditional dependence structure between oil, gold and USD exchange rates: Nested copula based GJR-GARCH model," Energy Economics, Elsevier, vol. 80(C), pages 876-889.
    4. Li, Feng & Kang, Yanfei, 2018. "Improving forecasting performance using covariate-dependent copula models," International Journal of Forecasting, Elsevier, vol. 34(3), pages 456-476.
    5. Zhang, Dalu, 2014. "Vine copulas and applications to the European Union sovereign debt analysis," International Review of Financial Analysis, Elsevier, vol. 36(C), pages 46-56.
    6. Y. Malevergne & D. Sornette, 2003. "Testing the Gaussian copula hypothesis for financial assets dependences," Quantitative Finance, Taylor & Francis Journals, vol. 3(4), pages 231-250.
    7. Ozonder, Gozde & Miller, Eric J., 2021. "Longitudinal investigation of skeletal activity episode timing decisions – A copula approach," Journal of choice modelling, Elsevier, vol. 40(C).
    8. Aristidis Nikoloulopoulos & Dimitris Karlis, 2010. "Regression in a copula model for bivariate count data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(9), pages 1555-1568.
    9. Yu, Lining & Voit, Eberhard O., 2006. "Construction of bivariate S-distributions with copulas," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1822-1839, December.
    10. M. Tariqul Hasan & Gary Sneddon & Renjun Ma, 2012. "Regression analysis of zero-inflated time-series counts: application to air pollution related emergency room visit data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(3), pages 467-476, June.
    11. Nabil Kazi-Tani & Didier Rullière, 2019. "On a construction of multivariate distributions given some multidimensional marginals," Post-Print hal-01575169, HAL.
    12. Ying Hung & Li‐Hsiang Lin & C. F. Jeff Wu, 2022. "Varying coefficient frailty models with applications in single molecular experiments," Biometrics, The International Biometric Society, vol. 78(2), pages 474-486, June.
    13. Jianhua Lin & Xiaohu Li, 2014. "Multivariate Generalized Marshall–Olkin Distributions and Copulas," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 53-78, March.
    14. Kajal Lahiri & Liu Yang, 2023. "Predicting binary outcomes based on the pair-copula construction," Empirical Economics, Springer, vol. 64(6), pages 3089-3119, June.
    15. Aristidis K. Nikoloulopoulos & Peter G. Moffatt, 2019. "Coupling Couples With Copulas: Analysis Of Assortative Matching On Risk Attitude," Economic Inquiry, Western Economic Association International, vol. 57(1), pages 654-666, January.
    16. Katja Ignatieva & Eckhard Platen, 2010. "Modelling Co-movements and Tail Dependency in the International Stock Market via Copulae," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 17(3), pages 261-302, September.
    17. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    18. J. Rosco & Harry Joe, 2013. "Measures of tail asymmetry for bivariate copulas," Statistical Papers, Springer, vol. 54(3), pages 709-726, August.
    19. Yuri Salazar & Wing Ng, 2015. "Nonparametric estimation of general multivariate tail dependence and applications to financial time series," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(1), pages 121-158, March.
    20. Cooray Kahadawala, 2018. "Strictly Archimedean copulas with complete association for multivariate dependence based on the Clayton family," Dependence Modeling, De Gruyter, vol. 6(1), pages 1-18, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:63:y:2007:i:3:p:673-680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.