IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v110y2023i1p33-50..html
   My bibliography  Save this article

Localized conformal prediction: a generalized inference framework for conformal prediction

Author

Listed:
  • Leying Guan

Abstract

SummaryWe propose a new inference framework called localized conformal prediction. It generalizes the framework of conformal prediction by offering a single-test-sample adaptive construction that emphasizes a local region around this test sample, and can be combined with different conformal scores. The proposed framework enjoys an assumption-free finite sample marginal coverage guarantee, and it also offers additional local coverage guarantees under suitable assumptions. We demonstrate how to change from conformal prediction to localized conformal prediction using several conformal scores, and we illustrate a potential gain via numerical examples.

Suggested Citation

  • Leying Guan, 2023. "Localized conformal prediction: a generalized inference framework for conformal prediction," Biometrika, Biometrika Trust, vol. 110(1), pages 33-50.
  • Handle: RePEc:oup:biomet:v:110:y:2023:i:1:p:33-50.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asac040
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paindaveine, Davy & Siman, Miroslav, 2011. "On directional multiple-output quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 193-212, February.
    2. Leying Guan & Robert Tibshirani, 2022. "Prediction and outlier detection in classification problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 524-546, April.
    3. Jing Lei & Larry Wasserman, 2014. "Distribution-free prediction bands for non-parametric regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 71-96, January.
    4. Victor Chernozhukov & Kaspar Wuthrich & Yinchu Zhu, 2019. "Distributional conformal prediction," Papers 1909.07889, arXiv.org, revised Aug 2021.
    5. Jing Lei & Max G’Sell & Alessandro Rinaldo & Ryan J. Tibshirani & Larry Wasserman, 2018. "Distribution-Free Predictive Inference for Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1094-1111, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul, Joseph R. & Schaffer, Mark E., 2024. "An introduction to conformal inference for economists," Accountancy, Economics, and Finance Working Papers 2024-13, Heriot-Watt University, Department of Accountancy, Economics, and Finance.
    2. Mulubrhan G. Haile & Lingling Zhang & David J. Olive, 2024. "Predicting Random Walks and a Data-Splitting Prediction Region," Stats, MDPI, vol. 7(1), pages 1-11, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Jianming & Luo, Qingxi & Tang, Jingwei & Heng, Jiani & Deng, Yuwen, 2022. "Conformalized temporal convolutional quantile regression networks for wind power interval forecasting," Energy, Elsevier, vol. 248(C).
    2. Paul, Joseph R. & Schaffer, Mark E., 2024. "An introduction to conformal inference for economists," Accountancy, Economics, and Finance Working Papers 2024-13, Heriot-Watt University, Department of Accountancy, Economics, and Finance.
    3. Zhang, Yingying & Shi, Chengchun & Luo, Shikai, 2023. "Conformal off-policy prediction," LSE Research Online Documents on Economics 118250, London School of Economics and Political Science, LSE Library.
    4. Victor Chernozhukov & Kaspar Wuthrich & Yinchu Zhu, 2019. "Distributional conformal prediction," Papers 1909.07889, arXiv.org, revised Aug 2021.
    5. Jingsen Kong & Yiming Liu & Guangren Yang & Wang Zhou, 2025. "Conformal prediction for robust deep nonparametric regression," Statistical Papers, Springer, vol. 66(1), pages 1-36, January.
    6. Xie, Haihan & Kong, Linglong, 2023. "Gaussian copula function-on-scalar regression in reproducing kernel Hilbert space," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    7. Xiaohui Liu & Shihua Luo & Yijun Zuo, 2020. "Some results on the computing of Tukey’s halfspace median," Statistical Papers, Springer, vol. 61(1), pages 303-316, February.
    8. Acharki, Naoufal & Bertoncello, Antoine & Garnier, Josselin, 2023. "Robust prediction interval estimation for Gaussian processes by cross-validation method," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    9. Brian D. Williamson & Peter B. Gilbert & Marco Carone & Noah Simon, 2021. "Nonparametric variable importance assessment using machine learning techniques," Biometrics, The International Biometric Society, vol. 77(1), pages 9-22, March.
    10. Tengyuan Liang, 2022. "Universal prediction band via semi‐definite programming," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1558-1580, September.
    11. Pedro Delicado & Daniel Peña, 2023. "Understanding complex predictive models with ghost variables," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 107-145, March.
    12. Paindaveine, Davy & Šiman, Miroslav, 2012. "Computing multiple-output regression quantile regions," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 840-853.
    13. Merlo, Luca & Petrella, Lea & Salvati, Nicola & Tzavidis, Nikos, 2022. "Marginal M-quantile regression for multivariate dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    14. Dean Fantazzini, 2024. "Adaptive Conformal Inference for Computing Market Risk Measures: An Analysis with Four Thousand Crypto-Assets," JRFM, MDPI, vol. 17(6), pages 1-44, June.
    15. Solari, Aldo & Djordjilović, Vera, 2022. "Multi split conformal prediction," Statistics & Probability Letters, Elsevier, vol. 184(C).
    16. Paola Stolfi & Mauro Bernardi & Lea Petrella, 2018. "The sparse method of simulated quantiles: An application to portfolio optimization," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 375-398, August.
    17. Montes-Rojas, Gabriel, 2017. "Reduced form vector directional quantiles," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 20-30.
    18. Lihua Lei & Emmanuel J. Candès, 2021. "Conformal inference of counterfactuals and individual treatment effects," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 911-938, November.
    19. David J. Olive, 2018. "Applications of hyperellipsoidal prediction regions," Statistical Papers, Springer, vol. 59(3), pages 913-931, September.
    20. Matteo Borrotti, 2024. "Quantifying Uncertainty with Conformal Prediction for Heating and Cooling Load Forecasting in Building Performance Simulation," Energies, MDPI, vol. 17(17), pages 1-13, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:110:y:2023:i:1:p:33-50.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.