IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v106y2019i4p889-911..html
   My bibliography  Save this article

Sequentially additive nonignorable missing data modelling using auxiliary marginal information

Author

Listed:
  • Mauricio Sadinle
  • Jerome P Reiter

Abstract

SummaryWe study a class of missingness mechanisms, referred to as sequentially additive nonignorable, for modelling multivariate data with item nonresponse. These mechanisms explicitly allow the probability of nonresponse for each variable to depend on the value of that variable, thereby representing nonignorable missingness mechanisms. These missing data models are identified by making use of auxiliary information on marginal distributions, such as marginal probabilities for multivariate categorical variables or moments for numeric variables. We prove identification results and illustrate the use of these mechanisms in an application.

Suggested Citation

  • Mauricio Sadinle & Jerome P Reiter, 2019. "Sequentially additive nonignorable missing data modelling using auxiliary marginal information," Biometrika, Biometrika Trust, vol. 106(4), pages 889-911.
  • Handle: RePEc:oup:biomet:v:106:y:2019:i:4:p:889-911.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asz054
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olanrewaju Akande & Gabriel Madson & D. Sunshine Hillygus & Jerome P. Reiter, 2021. "Leveraging auxiliary information on marginal distributions in nonignorable models for item and unit nonresponse," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(2), pages 643-662, April.
    2. Majid Mojirsheibani, 2022. "On the maximal deviation of kernel regression estimators with NMAR response variables," Statistical Papers, Springer, vol. 63(5), pages 1677-1705, October.
    3. Mojirsheibani, Majid, 2021. "On classification with nonignorable missing data," Journal of Multivariate Analysis, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:106:y:2019:i:4:p:889-911.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.