IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v103y2016i3p595-607..html
   My bibliography  Save this article

Indirect multivariate response linear regression

Author

Listed:
  • Aaron J. Molstad
  • Adam J. Rothman

Abstract

We propose a class of estimators of the multivariate response linear regression coefficient matrix that exploits the assumption that the response and predictors have a joint multivariate normal distribution. This allows us to indirectly estimate the regression coefficient matrix through shrinkage estimation of the parameters of the inverse regression, or the conditional distribution of the predictors given the responses. We establish a convergence rate bound for estimators in our class and we study two examples, which respectively assume that the inverse regression's coefficient matrix is sparse and rank deficient. These estimators do not require that the forward regression coefficient matrix is sparse or has small Frobenius norm. Using simulation studies, we show that our estimators outperform competitors.

Suggested Citation

  • Aaron J. Molstad & Adam J. Rothman, 2016. "Indirect multivariate response linear regression," Biometrika, Biometrika Trust, vol. 103(3), pages 595-607.
  • Handle: RePEc:oup:biomet:v:103:y:2016:i:3:p:595-607.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asw034
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kun Chen & Hongbo Dong & Kung-Sik Chan, 2013. "Reduced rank regression via adaptive nuclear norm penalization," Biometrika, Biometrika Trust, vol. 100(4), pages 901-920.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Yuehan & Xia, Siwei & Yang, Hu, 2023. "Multivariate sparse Laplacian shrinkage for joint estimation of two graphical structures," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Canyi & Xu, Wangli & Zhu, Liping, 2022. "Distributed estimation in heterogeneous reduced rank regression: With application to order determination in sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    2. S. Yaser Samadi & Wiranthe B. Herath, 2023. "Reduced-rank Envelope Vector Autoregressive Models," Papers 2309.12902, arXiv.org.
    3. Luo, Chongliang & Liang, Jian & Li, Gen & Wang, Fei & Zhang, Changshui & Dey, Dipak K. & Chen, Kun, 2018. "Leveraging mixed and incomplete outcomes via reduced-rank modeling," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 378-394.
    4. Feng, Sanying & Lian, Heng & Zhu, Fukang, 2016. "Reduced rank regression with possibly non-smooth criterion functions: An empirical likelihood approach," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 139-150.
    5. Mishra, Aditya & Dey, Dipak K. & Chen, Yong & Chen, Kun, 2021. "Generalized co-sparse factor regression," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    6. Yang, Yaohong & Zhao, Weihua & Wang, Lei, 2023. "Online regularized matrix regression with streaming data," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    7. Yang, Yuehan & Xia, Siwei & Yang, Hu, 2023. "Multivariate sparse Laplacian shrinkage for joint estimation of two graphical structures," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    8. Kun Chen & Kung-Sik Chan & Nils Chr. Stenseth, 2014. "Source-Sink Reconstruction Through Regularized Multicomponent Regression Analysis-With Application to Assessing Whether North Sea Cod Larvae Contributed to Local Fjord Cod in Skagerrak," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 560-573, June.
    9. Zhao, Weihua & Jiang, Xuejun & Lian, Heng, 2018. "A principal varying-coefficient model for quantile regression: Joint variable selection and dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 269-280.
    10. Guo, Wenxing & Balakrishnan, Narayanaswamy & He, Mu, 2023. "Envelope-based sparse reduced-rank regression for multivariate linear model," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    11. Ahelegbey, Daniel Felix, 2015. "The Econometrics of Bayesian Graphical Models: A Review With Financial Application," MPRA Paper 92634, University Library of Munich, Germany, revised 25 Apr 2016.
    12. Jiang, Zhenzhen & Guo, Hongping & Wang, Jinjuan, 2023. "Feature screening for multiple responses," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    13. Goh, Gyuhyeong & Dey, Dipak K. & Chen, Kun, 2017. "Bayesian sparse reduced rank multivariate regression," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 14-28.
    14. Wei Hu & Tianyu Pan & Dehan Kong & Weining Shen, 2021. "Nonparametric matrix response regression with application to brain imaging data analysis," Biometrics, The International Biometric Society, vol. 77(4), pages 1227-1240, December.
    15. Kohei Yoshikawa & Shuichi Kawano, 2023. "Sparse reduced-rank regression for simultaneous rank and variable selection via manifold optimization," Computational Statistics, Springer, vol. 38(1), pages 53-75, March.
    16. Fan, Jianqing & Gong, Wenyan & Zhu, Ziwei, 2019. "Generalized high-dimensional trace regression via nuclear norm regularization," Journal of Econometrics, Elsevier, vol. 212(1), pages 177-202.
    17. Sangyoon Yi & Raymond Ka Wai Wong & Irina Gaynanova, 2023. "Hierarchical nuclear norm penalization for multi‐view data integration," Biometrics, The International Biometric Society, vol. 79(4), pages 2933-2946, December.
    18. Lian, Heng & Kim, Yongdai, 2016. "Nonconvex penalized reduced rank regression and its oracle properties in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 383-393.
    19. Daniel Felix Ahelegbey, 2015. "The Econometrics of Networks: A Review," Working Papers 2015:13, Department of Economics, University of Venice "Ca' Foscari".

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:103:y:2016:i:3:p:595-607.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.